

Roy F. Weston, Inc.
Federal Programs Division
37 Upton Drive
Wilmington, Massachusetts 01887
(978) 657-5400 - Fax (978) 658-0700

MAR 6 8 2001

SUPERFUND TECHNICAL ASSESSMENT AND RESPONSE TEAM EPA CONTRACT 68-W-00-097

20 February 2001 20102-001-001-1085-70 DC No. A-1460

Mr. Chuck Schwer Vermont Agency for Natural Resources Department of Environmental Conservation 103 South Main Street / West Office Waterbury, VT 05671-0404

Subject:

Final Expanded Site Inspection Report

Blood Farm Dump Putney, Vermont

CERCLIS No. VTD982542730

TDD No. 00-05-0048

Dear Mr. Schwer:

Enclosed is one copy of the Final Expanded Site Inspection (ESI) Report for the Blood Farm Dump property in Putney, Vermont. The U.S. Environmental Protection Agency Region I (EPA Region I), Office of Site Remediation and Restoration and the Vermont Department of Environmental Protection (VT DEC) comments regarding the contents of the Draft ESI Report have been incorporated, either within this document or as proposed additional work. No comments were received from the property owner. Comments submitted by a local concerned citizen were addressed based on EPA Region I guidance.

Please contact the undersigned at (978) 657-5400 if you have any questions regarding this report.

Very truly yours,

ROY F. WESTON, INC. Region I START 2000

Denise M. Laferte Work Group Leader

Daniel Keefe
Project Leader

DML:dml Enclosures

cc: Gerardo Millan-Ramos (EPA Site Assessment Task Monitor) w/o enclosure

FINAL EXPANDED SITE INSPECTION SUMMARY REPORT FOR BLOOD FARM DUMP PUTNEY, VERMONT

Prepared For:
U.S. Environmental Protection Agency
Region I
Office of Site Remediation and Restoration
I Congress Street, Suite 1100
Boston, MA 02114-2023

CONTRACT NO. 68-W-00-097

CERCLIS NO. VTD982542730 TDD NO. 00-05-0048 PCS NO. 1085 DC NO. A-1013

Submitted By: Roy F. Weston, Inc. (WESTON_®) Region I

Superfund Technical Assessment and Response Team 2000 (START) 37 Upton Drive Wilmington, MA 01887

20 February 2001

Region I START 2000

Reviewed and Approved:

Denise M. Laferte

Work Group Leader

Daniel Keefe
Project Leader

QA Review

Date

Date

Date

Date

Date

DISCLAIMER

This report was prepared solely for the use and benefit of the U.S. Environmental Protection Agency Region I (EPA Region I), Office of Site Remediation and Restoration for the specific purposes set forth in the contract between the EPA Region I and the Roy F. Weston, Inc. (WESTON), Superfund Technical Assessment and Response Team 2000 (START). Professional services performed and reports generated by START have been prepared for EPA Region I purposes as described in the START contract. The information, statements, and conclusions contained in the report were prepared in accordance with the statement of work, and contract terms and conditions. The report may be subject to differing interpretations or misinterpretation by third parties who did not participate in the planning, research or consultation processes. Any use of this document or the information contained herein by persons or entities other than the EPA Region I shall be at the sole risk and liability of said person or entity. START, therefore, expressly disclaims any liability to persons other than the EPA Region I who may use or rely upon this report in any way or for any purpose.

TABLE OF CONTENTS

<u>Title</u>	<u>Page</u>
INTRODUCTION	
SITE DESCRIPTION	
	EGULATORY HISTORY AND WASTE
WASTE/SOURCE SAME	TANG
GROUNDWATER PATH	TWAY
SURFACE WATER PAT	HWAY
SOIL EXPOSURE PATH	WAY 31
AIR PATHWAY	32
SUMMARY	
REFERENCES	
ATTACHMENT A -	Blood Farm Dump Surficial Soil/Source Sample Analytical Results START Samples collected 6 December 1998
ATTACHMENT B -	Blood Farm Dump Drinking Water Sample Analytical Results START Samples collected 6 December 1998
ATTACHMENT C -	Blood Farm Dump Surface Water and Sediment Sample Analytical Results START Samples collected 7 December 1998

LIST OF FIGURES

<u>Figur</u>	re No. <u>Title</u>	<u>Page</u>
1	Location Map	2
2	START Sample Locations and Site Sketch	3
3	Surface Water Pathway Sketch	24
	LIST OF TABLES	
Table	No. <u>Title</u>	<u>Page</u>
1	Historical Ownership of the Blood Farm Dump Property	5
2	Soil Boring Samples Collected by Vermont Agency of Natural Resources for the Blood Farm Dump Property in May 1990	7
3	Source Evaluation for Blood Farm Dump	8
4	Hazardous Waste Quantity for Blood Farm Dump	8
5	Sample Summary: Blood Farm Dump Surficial Soil/Source Samples Collected by START on 6 December 1998	10
6	Summary of Analytical Results, Surficial Soil/Source Sample Analysis for Blood Farm Dump	11
7	Comparison of Analytes Detected in Surficial Soils to EPA Region III Risk-Based Concentration Values, Blood Farm Dump	14
8	Public Groundwater Supply Sources Within 4-Radial Miles of Blood Farm Dump	16
9	Estimated Drinking Water Populations Served by Groundwater Sources Within 4-Radial Miles of Blood Farm Dump	17
10	Sample Summary: Blood Farm Dump Drinking Water Samples Collected by START on 6 December 1998	18
11	Summary of Analytical Results, Drinking Water Sample Analysis for Blood Farm Dump	20

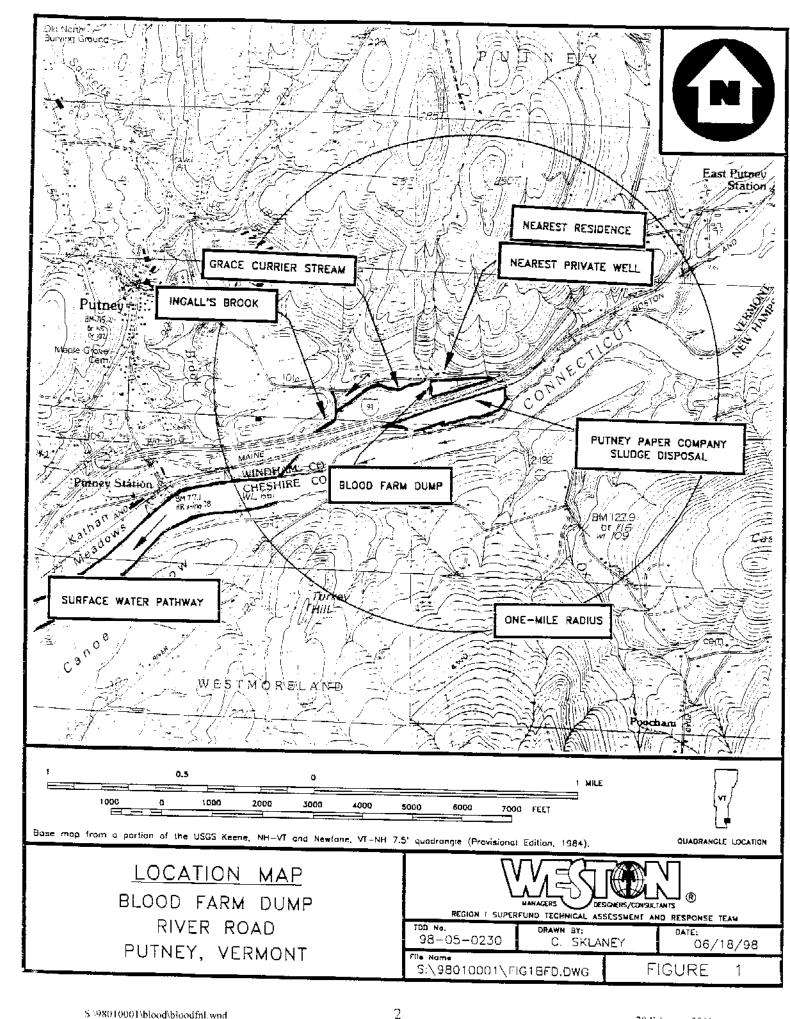
LIST OF TABLES (Concluded)

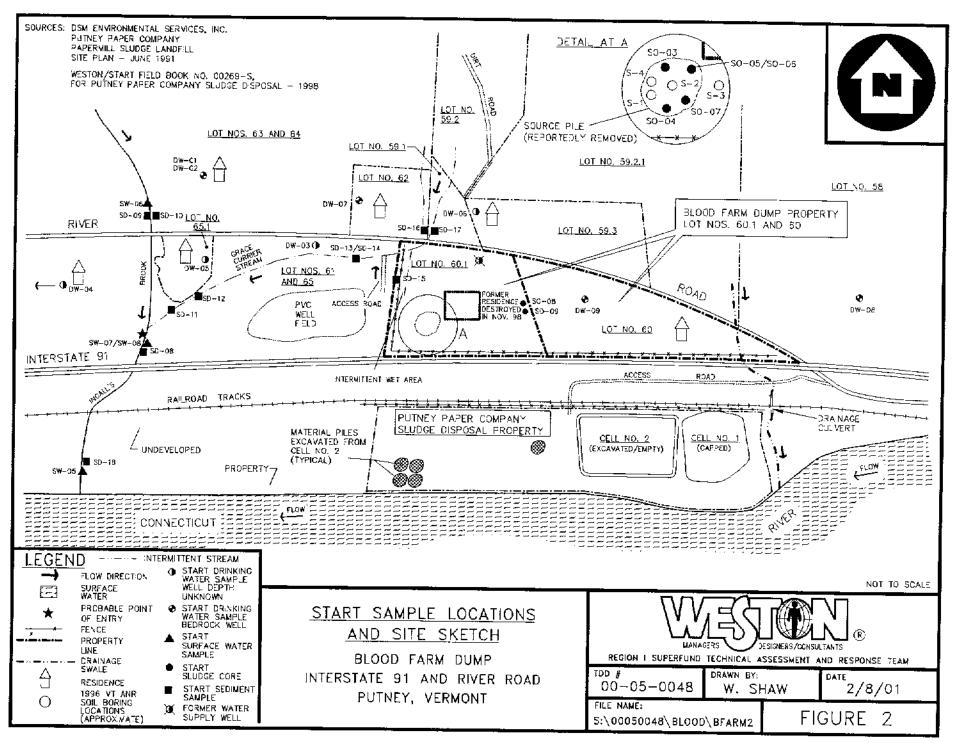
Table	No. <u>Title</u>	<u>Page</u>
12	Comparison of Analytes Detected START in Drinking Water Samples to U.S Environmental Protection Agency and State of Vermont Action Levels Blood Farm Dump	
13	Surface Water Bodies along the 15-Mile Downstream Pathway from Blood Farm Dump	. 25
14	Sensitive Environments Along the 15-Mile Downstream Surface Water Pathway from Blood Farm Dump	. 25
15	Sample Summary: Blood Farm Dump Surface Water and Sediment Samples Collected by START on 7 December 1998	27
16	Summary of Analytical Results, Surface Water and Sediment Sample Analysis for Blood Farm Dump	30
17	Estimated Population Within 4-Radial Miles of Blood Farm Dump	33
18	Sensitive Environments Located Within 4-Radial Miles of Blood Farm Dump	33

Final Expanded Site Inspection Summary Report Blood Farm Dump Putney, Vermont

CERCLIS No. VTD982542730 TDD No. 00-05-0048 Work Order No. 20102-001-001-1085-70

INTRODUCTION


The Roy F. Weston, Inc. (WESTON®) Superfund Technical Assessment and Response Team 2000 (START) was requested by the U.S. Environmental Protection Agency Region I (EPA Region I), Office of Site Remediation and Restoration to perform an Expanded Site Inspection (ESI) of the Blood Farm Dump property located along River Road in Putney, Vermont. Tasks were conducted in accordance with the ESI scope of work and technical specifications provided by EPA Region I. A Site Inspection (SI) report for the Blood Farm Dump property was prepared by the Vermont Agency of Natural Resources (VT ANR) on 1 February 1993. The SI report indicated that a portion of the Blood Farm Dump property had been used by the Putney Paper Company (PPC) for the disposal of paper mill sludge in Summer 1978. As part of the SI, soil/sludge samples were collected from the alleged disposal area. Analytical results for soil/sludge samples collected as part of the SI indicated the presence of polychlorinated biphenyls (PCBs), lead, and zinc in soil/sludge samples collected from a depth of up to 4 feet (ft) below ground surface (bgs). On the basis of the information provided in the SI report and concern expressed by a local citizen, the Blood Farm Dump ESI was initiated.


Background information used in the generation of this report was obtained through file searches conducted at EPA Region I and the Vermont Department of Environmental Conservation (VT DEC); telephone interviews with town officials; conversations with persons knowledgeable of the Blood Farm Dump property; and conversations with other Federal, State, and local agencies.

This package follows the guidelines developed under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended, commonly referred to as Superfund. However, these documents do not necessarily fulfill the requirements of other EPA Region I regulations such as those under the Resource Conservation and Recovery Act (RCRA) or other Federal, State, or local regulations. ESIs are intended to provide a preliminary screening of sites to facilitate EPA Region I's assignment of site priorities. They are limited efforts and are not intended to supersede more detailed investigations.

SITE DESCRIPTION

The Blood Farm Dump property is located along River Road in Putney, Windham County, Vermont. The geographic coordinates for the property, as measured from the approximate center of the property, are 42° 58′ 11.3″ north latitude and 72° 29′ 46.0″ west longitude (Figure 1) [1; 2, p. 32]. The original property was comprised of a 5.4-acre lot that was later subdivided into a 2-acre lot and a 3.4-acre lot. The 2-acre lot is owned by PPC and is denoted by the Putney Tax Assessor's Office as Map/Lot No. 08-02-60.1 (Lot No. 60.1). The 2-acre lot contains the foundation of a former onsite residence (Figure 2). The 3.4-acre lot is owned by Ms. Saskia Whallon and is denoted by the Putney Tax Assessor's Office as Map/Lot No. 08-02-60 (Lot No. 60). A building located on the 3.4-acre lot is currently occupied by a residence (apartment) and a dog kennel business (Figure 2) [3; 4].

An SI report for the property was prepared by VT ANR on 1 February 1993 [6]. The SI report indicated that the original property comprised "5.5 acres" [3, 6, pp. 2, 3]. However, according to the Putney Tax Assessor's office the original property comprised 5.4 acres [3]. For the purpose of this report, the property will include the 2-acre lot and the 3.4-acre lot, for a total of 5.4 acres.

The Blood Farm Dump property is bordered to the north and cast by River Road, to the south by Interstate 91, and to the west by undeveloped private property (Figure 2) [2; 5; 6]. Reportedly, "agricultural activities" may occur within 4-radial miles of the site.

On 2 April 1998, START personnel conducted an on-site reconnaissance of the Blood Farm Dump property [2, pp. 16-29]. START personnel observed a single abandoned residence, a dirt driveway, and grassy open spaces on Lot No. 60.1. Lot No. 60 was occupied by a residence and dog kennel business [2, pp. 15, 22]. There are no schools or day-care facilities located within 200 feet (ft) of any potential source area [2, p. 22]. There are no employees or residents associated with Lot No. 60.1 [2, pp. 15, 16]. There are two residents associated with Lot No. 60. These two residents, and one additional employee, work on site (Lot No. 60). File information does not indicate that disposal took place on Lot No. 60 (the eastern portion of the original property).

File information indicates that a 2,000-cubic yard (yd³) pile of paper mill sludge was disposed of on the western portion of the property in Summer 1978 [6]. The pile was reportedly removed in the early 1990s, possibly 1992. However, conflicting information exists. A local concerned citizen alleges that the pile was never removed and that the pile was spread over the Blood Farm Dump property and covered with a thin layer of soil. At the time of the START on-site reconnaissance on 2 April 1998, there was no pile observed on the portion of Blood Farm Dump previously noted in the file information. START personnel did observe a grey, clay-like material intermixed with surficial soils in some areas of Lot No. 60.1 [2].

During the reconnaissance, START personnel noted that the owner of the western abutting property has installed an estimated 200 to 250 polyvinyl chloride (PVC) monitoring wells/piezometers on the parcel west of the Blood Farm Dump property and along portions of the downstream surface water pathway [2, photos 5, 6]. The reported purpose for installation of the monitoring wells/piezometers was to assess potential migration of contaminants from the Blood Farm Dump property and the Putney Paper Company Sludge Disposal (PPCSD) property [Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) No. VT0000128181]. The PPCSD property is a private landfill owned by PPC, located south of the Blood Farm Dump property and across Interstate 91 (Figure 2).

On 8 November 1998, the abandoned residence located on Lot No. 60.1 was burned as part of fire training exercises conducted by several local area fire departments. START personnel observed the fire-fighting exercises and noted that very little runoff was generated from on-site activities and that there was no visible impact to nearby Grace Currier Stream or Ingall's Brook [2, pp. 36, 37]. START personnel also noted that a majority of smoke generated during on-site activities drifted in a southeasterly direction and did not significantly impinge upon the ground surface [25]. It is unknown to START if subsequent precipitation events caused any residual contaminants associated with fire-training exercises to flow into Grace Currier Stream.

OPERATIONAL AND REGULATORY HISTORY AND WASTE CHARACTERISTICS

Property usage prior to 1978 is primarily unknown. Table 1 summarizes historical ownership of the Blood Farm Dump property.

Table 1

Historical Ownership of the Blood Farm Dump Property

Date of Ownership	Owner
Unknown to 1978	The 5.4-acre property was originally used to raise pigs and cultivate vegetable crops. MBCC Bellows Falls Corporation owned the property.
July 1978	Mr. Earl Stockwell of the Northern States Corporation purchased the 5.4-acre property.
July 1984	Putney Paper Company (PPC) (Mr. Earl Stockwell, President) purchased the 5.4-acre property from Northern States Corporation.
1985	The property was divided into a 2-acre lot and a 3.4-acre lot. PPC sold the 2-acre lot to Mr. Thomas and Mrs. Nancy Meyer in 1985; the 2-acre lot was subsequently sold to Mr. Dan Meyer on an unknown date.
1987	The 3.4-acre lot was sold to Mr. Thomas Meyer and Mrs. Nancy Meyer,
January 1997	The 2-acre lot and the 3.4-acre lot were sold back to PPC. The 3.4-acre lot was subsequently sold on an unknown date and is currently occupied by an apartment and dog kennel. PPC retains ownership of the 2-acre lot.

[6, pp. 2, 3]

The PPC mill facility is located approximately 1.4 miles northwest of the Blood Farm Dump property. The PPC mill facility is listed in CERCLIS as Putney Paper Company Mill & Lagoons (CERCLIS No. VTD001087188). PPC reportedly dumped paper mill sludge generated at the mill facility, potentially containing heavy metals and PCBs, on the Blood Farm Dump property. The sludge was reportedly deposited on the western portion of the "5.5-acre" property during Summer 1978, although dumping may have occurred at other times as well. Many of the locations and methods of paper sludge disposal by PPC are undocumented [6, p. 3].

On 2 September 1980, Southern Vermont Engineering prepared a document titled "Sanitary Landfill for Putney Paper Company, Inc." for PPC. The document, submitted to VT DEC, proposed the creation of a private landfill (for PPC) on a "5.5-acre" triangular tract of land located on River Road, in Putney, Vermont [44, p. 2]. Based on location sketches within the document, the property referred to is the current Blood Farm Dump property.

Note: Text in italics indicates original portions of the 1 February 1993 Vermont Department of Environmental Conservation, Agency of Natural Resources, Hazardous Materials Management Division Site Inspection Report which were either copied or paraphrased.

In 1983, PPC submitted a document titled "Sludge Landfill for Putney Paper Company, Inc." to VT DEC. The document again proposed that a private landfill (for PPC) be constructed on the Blood Farm Dump property [45]. A subsequent proposal cited the proposed landfill location on a 14-acre tract of land located south of Interstate Route 91, and north of the Connecticut River. The second proposed location, the current PPCSD property, is where the private landfill was subsequently developed. This proposal also stated that PPC generated approximately 30 yd³ of sludge daily and that the sludge was being disposed of at the sanitary landfill in Brattleboro, Vermont pending landfill certification [45].

On an unknown date prior to 1989, a residence was built on Lot No. 60.1 [5, p. 9]. START personnel observed the residence during an on-site reconnaissance performed on 2 April 1998. At the time of the reconnaissance, the residence was abandoned and boarded up [2, 21].

On 28 December 1989, VT ANR completed a Preliminary Assessment (PA) report for the Blood Farm Dump property [5]. The PA report stated that PPC disposed of paper mill sludge on the Blood Farm Dump property during Summer 1978. The remainder of the PA report focused on manufacturing processes, disposal practices, and wastestreams associated with the PPC facility located 1.4 miles northwest of the Blood Farm Dump property. The PA report also discussed off-site paper sludge samples collected at the PPC mill facility. No environmental sampling was conducted at the Blood Farm Dump property as part of the PA [5].

In December 1989, samples were collected from a private drinking water supply well serving the Blood Farm Dump property residence (Lot No. 60.1) and from the off-site drinking water supply well serving the residence located on Lot No. 59.3. The samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and heavy metals. All VOCs and SVOCs tested below laboratory detection limits. Copper, zinc, and barium were detected in both water supplies at levels below the health-based groundwater enforcement standards in the 1989 Vermont Groundwater Protection Rule and Strategy [6, p. 7].

In May 1990, as part of the VT ANR SI, the off-site drinking water supply well serving the residence located on Lot No. 59.3 was again sampled. The sample was presumably analyzed for VOCs, SVOCs, and heavy metals. All VOCs and SVOCs were found to be below detection limits. Zinc had a higher concentration in the 1990 sample than the sample collected in 1989 [54 parts per billion (ppb) versus 16 ppb]. No drinking water samples were collected from the water supply well serving the Blood Farm Dump property (Lot No. 60.1) [6, p. 7].

On 1 February 1993, VT ANR completed the SI report for the Blood Farm Dump property [6]. According to the SI report, a grey clay-like sludge was found within approximately 200 ft of the onsite residence (Lot No. 60.1) during the PA. The sludge area was reportedly "slightly mounded" with "a thickness ranging up to 4 ft." In May 1990, three soil borings (S-1, S-2, and S-4) were advanced in the area of alleged sludge disposal as part of the SI. A fourth soil boring (S-3) was advanced at a reference location [6, p. 5]. Approximate soil boring locations are depicted on Figure 2. Table 2 summarizes soil boring samples collected as part of the VT ANR SI.

Table 2
Soil Boring Samples Collected by Vermont Agency of Natural Resources for the Blood Farm Dump Property in May 1990

Soil Boring	Sample Depth and Analysis Performed						
Location	Center of Sludge Body	Below Sludge/Soil Interface	2 Feet Below Sludge/Soil Interface				
Soil Boring S-1	Sludge sample SB-1A, collected from 1.7 ft to 2.4 ft bgs and analyzed for VOCs, SVOCs, Metals, and PCBs. Replicate sample SB-1A-R collected at same depth for same analyses as SB-1A.	Soil sample SB-1B, collected from 4.1 ft to 4.8 ft bgs and analyzed for VOCs, SVOCs, and Metals.	Soil sample SB-1C, collected from 7.2 ft to 8.0 ft and analyzed for VOCs, SVOCs, and Metals.				
Soil Boring S-2	Sludge sample SB-2A, collected from 1.7 ft to 2.3 ft bgs and analyzed for VOCs, SVOCs, Metals, and PCBs.	Soil sample SB-2B collected from 3.5 ft to 4.2 ft bgs and analyzed for VOCs, SVOCs, and Metals.	NA				
Soil Boring S-3	NA	NA	Background soil sample collected from 4.5 ft to 5 ft bgs and analyzed for VOCs, SVOCs, Metals, and PCBs.				
Soil Boring S-4	Sludge sample collected from 1.9 to 2.6 ft bgs for TCLP analysis.	NA	NA				

ft = Feet.

bgs = Below ground surface.

VOCs = Volatile organic compounds.

SVOCs = Semivolatile organic compounds.

PCBs = Polychlorinated biphenyls.

NA = Not applicable, sample not collected from noted location.

TCLP = Toxicity characteristic leaching procedure

[6, p, 5]

Soil and sludge sample analytical results indicated a concentration of 60 ppb of chloroform and 6 ppb of bromodichloromethane in the background soil sample. PCBs were reportedly present at concentrations ranging from 1,280 to 1,359 ppb in the sludge samples; no PCBs were found in the underlying soils. Lead concentrations of 18 parts per million (ppm) and 19 ppm were also detected in the sludge; no lead was detected in soil samples. Zinc was detected in the background soil sample at a concentration of 27 ppm, and at 100 ppm and 88 ppm in the sludge samples. Soil samples collected from just below the sludge/soil interface indicated that zinc was present at 38.4 and 41.7 ppm [6, Table 4]. Concentrations of 45 ppm of acetone were identified in a toxicity characteristics leaching procedure (TCLP) sludge extract analyzed by Aquatec, a private laboratory. Results from a VOC sample (analyzed by the State laboratory) did not indicate that acetone was detected in the sludge extract [6].

On 2 April 1998, START personnel conducted an on-site reconnaissance of the Blood Farm Dump property. On 8 November 1998, the abandoned residence located on Lot No. 60.1 was burned as part of fire training exercises conducted by several local area fire departments. Refer to the Site Description section of this report for further discussion of START observations regarding the on-site reconnaissance and fire training exercises.

On 6 and 7 December 1998, START personnel completed a combined sampling effort for the Blood Farm Dump property, and the nearby PPCSD property for the ESI. START personnel collected surficial soil/source samples from the Blood Farm Dump property, drinking water samples from active nearby residential wells, and surface water and sediment samples from the downstream surface water pathway associated with the Blood Farm Dump property [2; 21]. Refer to Soil Exposure Pathway, Groundwater Pathway, and Surface Water Pathway portions of this summary report for discussion of START sampling conducted for the Blood Farm Dump property. Analytical results for START samples collected specifically to assess the PPCSD property are discussed in a separate ESI Summary Report and are not included in this evaluation.

Table 3 presents identified structures or areas on the Blood Farm Dump property that are documented or potential sources of contamination, the containment factors associated with each source, and the relative location of each source.

Table 3
Source Evaluation for Blood Farm Dump

Source Area	Containment Factors	Spatial Location
Contaminated Soil	None	Southwestern portion of the
		property.

[2; 5; 6]

Table 4 summarizes the types of potentially hazardous substances which have been disposed, used, or stored on the Blood Farm Dump property.

Table 4

Hazardous Waste Quantity for Blood Farm Dump

Substance	Quantity or Volume/Area	Years of Use/Storage	Years of Disposal	Source Area
Paper mill sludge	2,000 cubic-yard pile	1978-1992	l year	Contaminated Soil

Notes: The paper studge was allegedly disposed of on the property in Summer 1978. The pile source is no longer located on the property and was likely removed in 1992. START surficial soil sampling documents that residual soil contamination in the alleged area of disposal remains on site.

The Resource Conservation and Recovery Information System (RCRIS) lists nine properties located in Putney, Vermont [26]. There are a total of three CERCLIS sites in Putney, Vermont: Blood Farm Dump, PPCSD, and Putney Paper Company Mill & Lagoons. There are no National Priority List (NPL) sites located in Putney, Vermont [27].

WASTE/SOURCE SAMPLING

As part of the VT ANR SI, soil and sludge samples were collected from differing depths from three soil borings advanced in the alleged sludge disposal area (SB-1, SB-2, and SB-4), and from a background soil boring location (SB-3) in 1990 [6, p. 3]. Sample analytical results indicated a concentration of 60 ppb of chloroform and 6 ppb of bromodichloromethane in the background soil sample. PCBs were reportedly present at concentrations ranging from 1,280 to 1,359 ppb in the sludge samples; no PCBs were found in the underlying soils. Lead concentrations of 18 ppm and 19 ppm were also detected in the sludge; no lead was detected in soil samples. Zinc was detected in the background soil sample at a concentration of 27 ppm, and at 100 ppm and 88 ppm in the sludge samples. Soil samples collected from just below the sludge/soil interface indicated that zinc was present at 38.4 and 41.7 ppm [6, Table 4]. A concentration of 45 ppm of acetone was identified in a TCLP sludge sample extract analyzed by Aquatec, a private laboratory; however, results from a VOC sample (analyzed by the state laboratory) did not detect acetone in the sludge [6].

On 6 December 1998, START personnel collected seven surficial soil/source samples from the Blood Farm Dump property. Five of the samples, including the duplicate, were collected to determine if residual surficial soil contamination exists in the vicinity of the former paper sludge pile. Two surficial soil samples were collected to document reference concentrations. Surficial soil/source samples were submitted to a Contract Laboratory Program (CLP) laboratory for analysis. Additionally, dioxin samples were collected from one surficial soil sample location (SS-05 and duplicate sample SS-06) and one reference sample location (SS-08) and were submitted to a Delivery of Analytical Services (DAS) laboratory for analysis. Table 5 is a summary of START surficial soil/source samples collected from the Blood Farm Dump property on 6 December 1998.

Table 5

Sample Summary: Blood Farm Dump
Surficial Soil/Source Samples Collected by START on 6 December 1998

Sample Location No.	Traffic Report No.	Date/ Time (hrs)	Remarks	Sample Depth and Location*	Sample Source
SO-03 ·	APP11 MALX66	12/6/98 1050	Grab	0-24 inches 42° 58′ 09.1″ N 72° 29′ 50.6″ W	Surficial soil sample collected from the presumed former location of the sludge pile. Sample consisted of light brown medium-to-fine sand with grey material.
SO-04	APP12 MALX67	12/6/98 1115	Grab	0-24 inches 42° 58' 09.1" N 72° 29' 51.8" W	Surficial soil sample collected from the presumed former location of the sludge pile. Sample consisted of medium brown sand with some clay and grey material.
SO-05**	APPI3 MALX68 DAF12H	12/6/98 1100	Grab	0-24 inches 42° 58′ 09.4″ N 72° 29′ 51.3″ W	Surficial soil sample collected from the presumed former location of the sludge pile. Sample consisted of medium grey clay and silt, and white or light grey material (interbedded). Some orange mottles (non-natural) present.
SO-06**	APP14 MALX69 DAF13H	12/6/98 1100	Grab	0-24 inches 42° 58′ 09.4″ N 72° 29′ 51.3″ W	Duplicate of sample SO-05, collected for quality control.
SO-07	APP15 MALX70	12/6/98 1125	Grab	0-24 inches 42° 58′ 08.9″ N 72° 29′ 51.2″ W	Surficial soil sample collected from the presumed former location of the sludge pile. Sample consisted of medium grey clay and silt (clay at depth).
SO-08**	APP16 MALX71 DAF14II	12/6/98 1030	Grab	0-24 inches 42° 58′ 10.6″ N 72° 29′ 48.6″ W	Surficial soil sample collected from the Blood Farm Dump property to serve as a reference sample. Sample consisted of light brown sand with silt.
SO-09	MALX72	12/6/98 1040	Grab	0-24 inches 42° 58' 10.6" N 72° 29' 48.6" W	Surficial soil sample collected from the Blood Farm Dump property to serve as an additional reference sample for metals analysis only. Sample consisted of light brown fine sand with some silt.

hrs = Hours.

Note: START surficial soil/source samples were field screened for volatile organic compounds using a Flame Ionization Detector. No readings above background levels were recorded. Samples SO-01A, SO-01B, SO-01C, SO-02A, SO-02B, SO-02C, and SO-02D were collected from the PPCSD property (specifically to evaluate the PPCSD property) and are not presented in this report.

[21]

^{*} Latitude and longitude for sample locations were recorded using a Global Positioning System (GPS) receiver on the day of collection.

^{**} Sample was also analyzed for dioxin.

Table 6 is a summary of organic compounds and inorganic elements detected through CLP and DAS analyses of START surficial soil/source samples. For each sample, a compound or element is listed if it is detected at three times or greater than the reference sample concentration (SO-08 and SO-09). However, if the compound or element is not detected in the reference sample, the reference sample's sample quantitation limit (SQL) (for organic analyses) or sample detection limit (SDL) (for inorganic analyses) is used as the reference value. These compounds or elements are listed if they occurred at a value equal to or greater than the reference sample's SQL or SDL and are designated by their approximate relative concentration above these values. Complete analytical results for START surficial soil/source samples are provided in Attachment Λ.

Sample results qualified with a "J" on analytical tables are considered approximate because of limitations identified during data validation. In addition, organic sample results reported at concentrations below quantitation limits and confirmed by mass spectrometry are also qualified by a "J" and considered approximate.

Table 6

Summary of Analytical Results
Surficial Soil/Source Sample Analysis for Blood Farm Dump

Sample Location	Compound/ Element	Sample Concentration		Reference Concentration		-	Comments
SO-03	SVOCs						
APP11 MALX66	Butylbenzylphthalate	2.000	EB ppb	1,900	UJ	bbp	1.1 × SQL
	PESTICIDES/PCBs						
	4,4' DDE	6.0	ррь	3.9	U	ppb	1.5 × SQL
	4,4' DDT	8.8	ppb	3.9	U	ppb	2.3 × SQL
	Aroclor-1254	44	ppb :	39	U	ppb	1.1 × SQL
<u> </u>	INORGANICS	<u> </u>					
	Calcium	8,080	ppm	1,620		ppm	5.0 × SD1.
	Thallium	1.8	ppm	0.48	IJ	ppm	3.8 × SDL
SO-04 APP12	PESTICIDES/PCBs			·			
MALX67	Aroclor-1254	56	dqq	39	υ	ppb	1.4 × SQL
SO-05	PESTICIDES/PCBs						
APP13 MALX68	4,4'-DDE	4.9	Ј ррь	3.9	υ	ppb	1.3 × SQL
DAF1211	Heptachlor epoxide	8.0	ррь	2.0	U	ррь	4× SQL
	gamma-Chlordane	4.4	ppb	2.0	U	ррЬ	2.2 × SQL
	Areclor-1254	150	ррь	39	U	ррь	3.8 × SQL

Table 6

Summary of Analytical Results
Surficial Soil/Source Sample Analysis for Blood Farm Dump (Continued)

Sample Location	Compound/ Element	Sa Conce	mple entratio	on	•	eferen centra		Comments
SO-05	INORGANICS							
(concl.)	Cyanide	0.93		ppm	0.23	U	ppm	4.0 × SD1.
	DIOXIN							
:	2,3,7,8-TCDD	6.14	J	ppt	0.266	UJ	ppt	23.1 × SDL
	1,2,3,6,7,8-HxCDD	22.8	J	ppt	0.971	UJ	ppt	23.5 × SDL
	1,2,3,7,8,9-HxCDD	8.87	J	ppt	0.554	UJ	ppt	16.0 × SDL
	1,2,3,4,6,7,8-HpCDD	404	J	ppt	12.7	J	ppt	31.8 × SDI.
į į	OCDD	3,740	J	ppt	131	J	ppt	28.5 × SDL
	2,3,7,8-TCDF	62.1	J	ppt	1.21*		ppt	51.3 × EMPC
	1,2,3,7,8-PeCDF	1.23	.ī	ppt	0.310	UJ	ppt	4.0 × SDL
	1,2,3,4,7,8-HxCDF	9.08	J	ppt	1.13	UJ	ppt	8.0 × SDL
	1,2,3,6,7,8-HxCDF	2.90	J	ppt	0.536	UJ	ppt	5.4 × SDL
	1,2,3,4,6,7,8-HpCDF	57.4	J	ppt	2.74	UJ	ppt	21.0 × SDL
	1,2,3,4,7,8,9-HpCDF	6.47	J	ppt	0.536	UJ	ppt	12.1 × SDL
	OCDF	191	J	ppt	8.06	UJ	ppt	23.7 × SDL
SO-06 APP14	PESTICIDES/PCBs		÷					
MALX69	4,4'-DDE	4.8	J	ppb	3.9	U	ppb	1.2 × SQL
DAF13H	Heptachlor epoxide	7.9	· <u>-</u>	ppb	2.0	U	ррь	4.0 × SQL
	gamma-Chlordane	4.3		dąq	2.0	U	ppb	2.2 × SQL
	Aroclor-1254	140		ppb	39	U	ppb	3.6 × SQL
	INORGANICS	·	·					
	Cyanide	0.60		ppın	0.23	U	ppm	2.6 × SDL
	DIOXIN							
	2,3.7,8-TCDD	4.5		ppt	0.266	UJ	ppt	16.9 × SDL
	1,2,3,6,7,8-HxCDD	24.9		ppt	0.971	U.I	ppt	25.6 × SDL

Table 6

Summary of Analytical Results
Surficial Soil/Source Sample Analysis for Blood Farm Dump (Concluded)

Sample Location	Compound/ Element		inple entration	Reference Concentration	Comments				
SO-06	DIOXIN (Concluded)								
(concl.)	1,2,3,7,8,9-HxCDD	7.97	þþt	0.554 UJ ppt	14.4 × SDL				
	1,2,3,4,6,7,8-HpCDD	348	J ppt	12.7 J ppt	27.4 × SDL				
! !	OCDD	3,430	J ppt	131 J ppt	26.2 × SDL				
	2,3,7,8-TCDF	41.5	J ppt	1.21* ppt	34.3 × EMPC				
	2,3,4,7,8-PeCDF	2.61	ppt	0.528 UJ ppt	4.9 × SDī.				
	1,2,3,4,7,8-HxCDF	8.41	ppt	1.13 UJ ppt	7.4 × SDL				
	1,2,3,4,6,7,8-HpCDF	49.2	J ppt	2.74 UJ ppt	18.0 × SDL				
	1,2,3,4,7,8,9-HpCDF	5.42	ppt	0.536 UJ ppt	10.1 × SDL				
	OCDF	172	J ppt	8.06 UJ ppt	21.3 × SDL				
SO-07 APP15	VOCs								
MALX70	Acetone	430	ppb	12 U ppb	35.8 × SQL				
	PESTICIDES/PCBs								
	Heptachlor epoxide	3.2	ppb	2 U ppb	1.6 × SQL				
	4,4'-DDE	4.4	Ј рръ	3.9 U pph	1.1 × SQL				
	4,4-DDT	4.8	J ppb	3.9 U ppb	1.2 × SQL				
	gamma-Chlordane	2.8	J pph	2 U ppb	1.4 × SQL				
	Aroclor-1254	110	dqq	39 U ppb	2.8 × SQL				

EB = Indicates the substance was also detected in the quality control equipment (rinsate) blank sample.

J = Quantitation is approximate due to limitations identified during the quality control review.

U = Indicates the sample was analyzed but the analyte was not detected and reports the detection value.

UJ = The reported quantitation limits are qualified estimated.

ppb : Parts per billion.
ppm = Parts per million.
ppt = Parts per trillion.

PCBs = Polychlorinated Biphenyls.
VOCs = Volatile Organic Compounds.
SVOCs = Semivolatile Organic Compounds.

SQL = Sample Quantitation Limit.
SDL = Sample Detection Limit.

* = These reference values are EMPCs (Estimated Maximum Possible Concentration).

[28; 29; 30]

Table 7 compares maximum concentrations detected in START source samples with risk-based concentrations for contaminants detected in surficial soils at the Blood Farm Dump property. VT ANR utilizes EPA Region III Risk-Based Concentrations (RBCs) for surficial soil comparisons [31; 32]. RBCs provide reference doses and cancer slope factors for selected chemicals. These toxicity factors have been combined with "standard" exposure scenarios to calculate RBCs. RBCs are chemical concentrations corresponding to fixed levels of risk in water, air, fish tissue, and soil. The primary use of RBCs is for chemical screening during a baseline risk assessment. For a single contaminant in a single medium, under standard default exposure assumptions, the RBC corresponds to a target risk or hazard quotient. RBCs have several important limitations. Specifically, excluded from consideration are transfers from soil to air and groundwater; cumulative risk for multiple contaminants or medium; and dermal risk. Additionally, the risks for inhalation of vapors from water are based on a very simple model, whereas detailed risk assessments may use more detailed models. RBCs do not constitute an enforceable regulatory standard and should not be viewed as a substitute for a site-specific risk assessment.

Table 7

Comparison of Analytes Detected in Surficial Soils to EPA Region III Risk-Based Concentration Values Blood Farm Dump

Analyte		Maximum Concentration Detected in START Soil Samples		Soil)
Acetone	430	ррь	7,800,000	ррь
Aroclor-1254	150	ppb	320	ррь
Butyl-benzylphthalate	2,000	ppb	16,000,000	ppb
Calcium	8,080	ррь	NL	ppb
2,3,7,8-TCDD	6.14 ј	ppt	4.3	ppt
gamma-Chlordane	4.4	ppb	1,800	ppb
Cyanide (free)	930	ppb	1,600,000	ppb
4,4'-DDE	6	ppb	1,900	ppb
4,4'-DDT	8.8	ppb	1,900	pph
Heptachlor Epoxide	8	ppb	70	ppb
Thallium	1.8	ppm	5,500	ppm

RBC = Risk-based concentration.

ppt = Parts per trillion.

ppb = Parts per billion.

ppm = Parts per million.

NL = Value is not listed.

Notes: The State of Vermont defers to EPA Region III RBC values for surficial soil assessment. 2,3,7,8-TCDD is the dioxin congener and is listed for comparison purposes. Bolded values indicate exceedences of RBC values.

Quantitation is approximate due to limitations identified during the quality control review.

Dioxin (2,3,7,8-TCDD congener) concentrations detected in surficial soil/source samples SO-05 and SO-06, collected by START on 6 December 1998, exceed EPA Region III RBCs. Dioxin congeners were also detected in paper sludge samples collected from the PPCSD property as part of the PPCSD ESI. Refer to the PPCSD ESI Summary Report for complete analytical results of off-site paper sludge samples collected as part of this investigation.

Based on START soil/source analytical results, one VOC (acetone); one SVOC (butylbenzylphthalate); one PCB (Aroclor-1254); four pesticides (4,4'DDE, heptachlor epoxide, gamma-chlordane, 4,4'DDT); two metals (calcium, thallium); cyanide; and 13 dioxin congeners (2,3,7,8-TCDD; 1,2,3,6,7,8-HxCDD; 1,2,3,7,8,9-HxCDD; 1,2,3,4,6,7,8-HpCDD; OCDD; 2,3,7,8-TCDF; 1,2,3,7,8-PeCDF; 2,3,4,7,8-PeCDF; 1,2,3,4,7,8-HxCDF; 1,2,3,6,7,8-HxCDF; 1,2,3,4,6,7,8-IIpCDF; 1,2,3,4,7,8,9-HpCDF; and OCDF) were detected in on-site surficial soils. To date, no known actions have been taken to address the release to surficial soils.

GROUNDWATER PATHWAY

Putney is located in the Vermont Piedmont and the Connecticut River Valley physiographic provinces. The Piedmont terrain is undulating to rough with many steep-sided valleys. The Connecticut River Valley includes the flat floodplains and terraces proximal to the river. The property is located on an upper river or glacial lake terrace in the valley [6, p. 6].

The property is underlain by fine-grained stratified glacial drift that has a low potential for groundwater development. However, some wells in the surficial deposits can be expected to yield sufficient water for domestic use. The surficial materials on the property are mapped as pebbly-sand littoral glacial lake deposits; south of the property, the materials are mapped as postglacial fluvial sands. The former Blood Farm Dump property water supply well (Lot No. 60.1) was drilled through 120 ft of silt, and was screened in a thin, 2-ft-to-5-ft-thick, gravel bed between the silt or clay, and the bedrock. The occurrence of a gravel bed at the base of the lake clays is common in the Connecticut River Valley [6, p. 6].

Two conflicting surveys of surficial deposits within the property area map different types of material. The first study, completed in 1960, delineates economic sand and gravel deposits on the terrace on either side of Sackett's Brook and south of Landmark College. The deposits extend eastward to include the site. A more recent study maps the terrace along the Connecticut River as mostly fine sediments indicating that 60% to 100% of the grains are less than 0.005 inches in diameter. The hills north of River Road are covered with a thin layer of glacial till. The differences in the reports relate to the variability of the surficial deposits. A typical cross section would have post-glacial fluvial sand and gravel over glacial lake fine sand, silt, or clay, over glacial outwash sand and gravel [6, p. 6].

Soil on the property is mapped as Unadilla silt loam, a soil mixture of clay, silt, sand, and organic matter. This soil is found on glacial lake plains and stream valley terraces; it is very deep, well drained, and moderately permeable. Soils in the vicinity of the property are a mixture of Windsor loamy fine sand and Agawam very fine loam. Windsor soil is found on terraces along stream valleys and formed in sandy glacial river deposits. The soil is very deep, excessively drained, and the permeability is rapid to very rapid. Agawam soil is also found on stream terraces, but it formed in loamy glacial drift deposits underlain by sandy glacial river deposits. This soil is very deep and

well drained; permeability is moderately rapid. Soil on the hillside north of the property is the Taconic-Hubhardton-Rock outcrop complex. The soil is shallow and somewhat excessively drained [6, p. 6].

The underlying bedrock is slate, phyllite, and mica schist with interbedded quartzite of the Devonian Littleton formation. The property is probably also near the contact between the Littleton formation and the Silurian Clough quartzite, and quartz and quartz-pebble conglomerate in the quartzite and quartz-mica schist matrix, and the Ordovician Partridge formation, a sulfitic mica schist and quartz-mica schist [6, p. 7].

Based on regional topography, overburden groundwater likely flows south toward the Connecticut River, or locally toward Grace Currier Stream and Ingall's Brook [8; 12]. However, there are no onsite monitoring wells located on the Blood Farm Dump property, and an actual determination of groundwater flow direction beneath the Blood Farm Dump property has not been determined to date.

The Vermont towns of Dummerston (population: 1,863) and Putney (population: 2,352), and the New Hampshire town of Westmoreland (population: 1,596) are located within 4-radial miles of the Blood Farm Dump property [8-13; 46; 47]. The majority of the populations for all three towns are served by private water supply wells. As described in Table 8, seven community-type public water supplies have been identified within 4-radial miles of the property [22; 23].

Table 8

Public Groundwater Supply Sources Within 4-Radial Miles of Blood Farm Dump

Distance/ Direction from Site	Source Name	Location of Source ^a	Estimated Population Served	Source Type ^b
1.1 miles/west	Germon Trailer Park	Putney, VT	47	l Bedrock
1.1 miles northwest	Landmark College	Putney, Vermont	350	Unknown
1.6 miles/east	Cheshire County Home	Westmoreland, NH	225	3 Bedrock
1.8 miles/east	Putney Meadows Well	Westmoreland, NH	56	Unknown
3.2 miles/east	Westmoreland Elementary School	Westmoreland, NH	155	Unknown
3.9 miles/southwest	Charette Water System	Dummerston, VT	30	5 Bedrock
3.9 miles/east Cedar Creek Well		Westmoreland, NH	30	Unknown

^{*} Indicates Town in which well is located.

The population utilizing private wells within 4-radial miles of the property was estimated using equal distribution calculations of CENTRACTS data identifying population, households, and private water wells for U.S. Census "Block Groups" which lie wholly or in part within individual radial distance rings measured from potential sources on the property [7]. The nearest private well is located on site (Lot No. 60) and serves a population of three [2]. Table 9 summarizes the population utilizing groundwater supplies located within 4-radial miles of the Blood Farm Dump property.

^b Overburden, Bedrock, or Unknown well type. [22; 23]

Table 9

Estimated Drinking Water Populations Served by Groundwater Sources
Within 4-Radial Miles of Blood Farm Dump

Radial Distance from Blood Farm Dump (miles)	Estimated Population Served by Private Wells	Estimated Population Served by Public Wells	Total Estimated Population Served by Groundwater Sources Within the Ring
≥ 0.00 to 0.25	21	0	21
> 0.25 to 0.50	62	0_	62
> 0.50 to 1.00	248	0	248
> 1.00 to 2.00	514	678	1,192
> 2.00 to 3.00	1,014	0	1,014
> 3.00 to 4.00	1,399	215	1,614
TOTAL	3,258	893	4,151

[7; 22; 23]

In December 1989, samples were collected from a private drinking water supply well serving the Blood Farm Dump property residence (Lot No. 60.1) and from the off-site drinking water supply well serving the residence located on Lot No. 59.3. The samples were analyzed for VOCs, SVOCs, and heavy metals. All VOCs and SVOCs tested below laboratory detection limits. Copper, zinc, and barium were detected in both water supplies at levels below the health-based groundwater enforcement standards based on the 1989 Vermont Groundwater Protection Rule and Strategy [6, p. 7].

In May 1990, as part of the VT ANR SI, the off-site drinking water supply well serving the residence located on Lot No. 59.3 was again sampled. The sample was presumably analyzed for VOCs. SVOCs, and heavy metals. All VOCs and SVOCs were found to be below detection limits. Zinc had a higher concentration in the 1990 sample than the sample collected in 1989 (54 ppb versus 16 ppb). No drinking water samples were collected from the water supply well serving the Blood Farm Dump property [6, p. 7].

On 6 December 1998, START personnel collected nine drinking water samples from nearby private drinking water supply wells [21]. Drinking water samples were analyzed for low-level VOCs via Method 524.2 by a DAS laboratory and for SVOCs, posticides, PCBs, metals, and cyanide through the CLP. Five of the drinking water samples were also analyzed for dioxin through a DAS laboratory. Table 10 provides a summary of drinking water samples collected by START.

Table 10

Sample Summary: Blood Farm Dump

Drinking Water Samples Collected by START on 6 December 1998

Sample Location	Traffic Report	Date/ Time		Well Type/ Approximate					
No.	No.	(hrs)	Remarks	Depth	Sample Source				
MATRIX	MATRIX: Aqueous - Drinking Water								
DW-01*	DAF85G APP02 MALX57 DAF85G	12/6/98 1215	Grab; No filter system	Bedrock- Drilled 240-250 ft bgs	Grab drinking water sample collected from a private residential deep water supply (Lot Nos. 63 and 64). Sample was collected to document if hazardous substances have impacted the private drinking water supply. MS/MSD for low-level VOC fraction only. Conductivity = 78 µmhos; Temperature =9.75 °C; Salinity = 0; pH = 5				
DW-02*	DAF86G APP03 MALX58 DAF86G	12/6/98 1230	Grab; No filter system	Bedrock- Drilled 240-250 ft bgs	Replicate of sample DW-01, collected for quality control. Conductivity = 78 µmhos; Temperature = 9.75 °C; Salinity = 0; p11 = 5				
DW-03*	DAF87G APP04 MALX59 DAF87G	12/6/98 1310	Grab; No filter system	Overburden Open Borehole 15-18 ft bgs	Grab drinking water sample collected from a residential shallow water supply (Lot Nos. 63 and 64). Sample was collected to document if hazardous substances have impacted the private drinking water supply. Sample appeared rusty-orange in color. Conductivity = 145 µmhos; Temperature – 9.25 °C; Salinity = 0; pH = 5				
DW-04	DAF88G APP05 MALX60	12/6/98 1315	Grab; Micro- filter present	Bedrock-HF Unknown depth	Grab drinking water sample collected from a residential private drinking water supply (166 River Road). Sample was collected to document if hazardous substances have impacted the private drinking water supply. Conductivity = 180 µmhos; Temperature = 13 °C; Salinity = 0; pH = 6				
DW-05*	DAF89G APP06 MALX61 DAF89G	12/6/98 1045	Grab; No filter system	Overburden Open Borehole 14 ft bgs	Grab drinking water sample collected from a private residential drinking water supply (Lot No. 65.1). Sample was collected to document if hazardous substances have impacted the private drinking water supply. Conductivity = 245 µmhos; Temperature = 11°C; Salinity = 0; pH = 6.5				

Table 10 Sample Summary: Blood Farm Dump Drinking Water Samples Collected by START on 6 December 1998 (Concluded)

Sample Location No.	Traffic Report No.	Date/ Time (hrs)	Remarks	Well Type/ Approximate Depth	Sample Source				
MATRIX	MATRIX: Aqueous - Drinking Water (Concluded)								
DW-06	DAF90G APP07 MALX62	12/6/98 1152	Grab	Unknown	Grab drinking water sample collected from a private residential drinking water supply (Lot No. 59.3). Sample was collected to document if hazardous substances have impacted the private drinking water supply. Conductivity 175 µmhos; Temperature = 12°C; Salinity = 0; pH = 6				
DW-07	DAF08H APP08 MALX63	12/6/98 1130	Grab; GAC filter system	Bedrock-HF 500 ft bgs	Grab drinking water sample collected from a private residential drinking water supply (Lot No. 62). Sample was collected to document if hazardous substances have impacted the private drinking water supply. GAC filter system installed reportedly due to high iron concentrations. Sample collected after filter and is therefore not indicative of actual groundwater concentrations. Conductivity = 140 µmhos; Temperature = 11°C; Salinity = 0: pH = 6				
DW-08*	DAF09H APP09 MALX64 DAF09H	12/6/98 1230	Grab; No filter system	Bedrock-HF 500 ft bgs	Grab drinking water sample collected from a presumed upgradient private residential drinking water supply well (Lot No. 58). Sample was collected to document background groundwater conditions. Conductivity = 425 µmhos; Temperature - 11°C; Salinity = 0; pH = 6				
DW-09	DAFI5H APP10 MALX65	12/6/98 0950	Grab; No filter system	Bedrock Drilled 500 ft bgs (390 ft bgs to pump)	Grab drinking water sample collected from a private residential drinking water supply well (Lot No. 60) to document if hazardous substances have impacted the private drinking water supply. Conductivity = 150 µmhos; Temperature = 10 °C; Salinity = 0; pH = 6				

HF = Hydrofractured at installation.

ťὶ = Feet.

bgs = Below ground surface.

MS/MSD Matrix spike/matrix spike duplicate.

VOC = Volatile organic compound.

μmhos = Micromilliohms. °C = Degrees celsius.

GAC - Granular activated carbon. Sample was analyzed for dioxin.

hrs · Hours. Table 11 is a summary of substances detected through CLP and DAS analyses of START drinking water samples. For each sample, a compound or element is listed if it is detected at three times or greater than the reference sample concentration (DW-08). However, if the compound or element is not detected in the reference sample, the reference sample's SDL is used as the reference value. These compounds or elements are listed if they occurred at a value equal to or greater than the reference sample's SDL and are designated by their approximate relative concentration above these values. Samples DW-03 and DW-05 were collected from overburden supply wells. The reference well selected for comparison (DW-08) is a 500 ft deep bedrock supply well. An upgradient overburden well could not be located and, as a result, the upgradient concentrations of certain naturally-occurring elements in overburden could not be determined. For comparative purposes, sample results for DW-03 and DW-05 were compared to DW-08; however, it cannot be accurately determined if the elevated substances in these wells are directly attributable to an on-site source or due to natural variation.

Complete analytical results of START drinking water samples including quantitation and detection limits are presented in Attachment B. Sample results qualified with a "J" on analytical tables are considered approximate because of limitations identified during data validation. In addition, organic sample results reported at concentrations below quantitation limits and confirmed by mass spectrometry are also qualified by a "J" and considered approximate.

Table 11

Summary of Analytical Results

Drinking Water Sample Analysis for Blood Farm Dump

Sample Location	Compound/ Element	Samp Concentr			ference entration	Comments			
DW-01	INORGANICS								
DAF85G APP02	Iron	2,460	ppb	70.8	ррб	34.7 × Ref			
MALX57	Manganese	398	ppb	10.4	րթե	38.3 × Ref			
DW-02	INORGANICS								
DAF86G APP03	Iron	2,660	ppb	70.8	ppb	37.6 × Ref			
MALX58	Manganese	434	ррь	10.4	ppb	41.7 × Ref			
DW-03*	INORGANICS								
DAF87G APP04	Aluminum	290	ppb	34	UJ ppb	8.5 × SDL			
MALX59	Arsenic	15.7	ppb	_ 4	Մ բրե	3.9 × SDL			
	Chromium	30.3	ррь	2	U ppb	15.2 × SDL			
	Соррег	548	ррь	16.9	ppb	32,4 × Ref			
	fron	37.800	ppb	70.8	ppb	534 × Ref			
	Lead	180	ppb	2	U ppb	90 × SDL			
	Manganese	39.1	ppb	10.4	ppb	3.8 × Ref			
	Vanadium	7.8	ppb	2	U_ppb	3.9 × SDL			

Table 11

Summary of Analytical Results

Drinking Water Sample Analysis for Blood Farm Dump (Concluded)

Sample Location	Compound/ Element	Sam Concent		Reference Concentration		Comments			
DW-04	INORGANICS								
DAF88G APP05	Iron	1,710	ррь	70.8	ppb	24.2 × Ref			
MALX60	Manganese	157	ppb	10.4	ppb	15.1 × Ref			
DW-05*	INORGANICS								
DAF89G APP06	Соррег	51.7	ррь	16.9	ррь	3.1 × Ref			
MALX61	Iron	379	ppb	70.8	ppb	5.4 × Ref			
	Nickel	1.1	J ppb	1	U ppb	1.1 × SDL			
DW-09 DAF09H	INORGANICS								
APP10 MAKX65	Manganese	77.9	ppb	10.4	ррь	7.5 × Ref			

Ref - Reference value.

SDL = Sample Detection Limit

J = Quantitation is approximate due to limitations identified during the quality control review.

U = Indicates the sample was analyzed but not detected and reports the detection value.

UJ = The reported quantitation limits are qualified estimated.

ppb = Parts per billion.

* Samples DW-03 and DW-05 were collected from overburden supply wells. The reference well (DW-08) was a 500 ft deep bedrock supply well. An upgradient overburden well could not be located and, as a result, the upgradient concentrations of certain naturally-occurring elements in overburden could not be determined. For comparative purposes, sample results for DW-03 and DW-05 were compared to DW-08; however, it cannot be accurately determined if the elevated concentrations of substances in these wells are directly attributable to on-site source or due to natural variation.

[30; 33; 34; 35]

No VOCs, SVOCs, pesticides, PCBs, dioxins, or cyanide were detected above reference criteria in any of the drinking water samples collected by START on 6 December 1998. All drinking water analytical results for the pesticide methoxychlor were rejected due to limitations identified during the quality control review.

Table 12 provides a comparison of analytes detected in START 1998 drinking water samples to EPA maximum contaminant levels (MCLs) and State of Vermont Primary and Secondary action levels. MCLs are Federal drinking water standards applied to public water supplies. All drinking water samples collected by START were collected from private drinking water supplies, and MCL values are presented for comparison purposes only. The State of Vermont Chapter 12 Groundwater Protection Rule and Strategy includes Primary and Secondary Enforcement Standards and Primary and Secondary Preventive Action Levels (PALs).

Table 12

Comparison of Analytes Detected in START Drinking Water Samples to U.S. Environmental Protection Agency and State of Vermont Action Levels Blood Farm Dump

Analyte detected by START	EPA MCL*	Primary ES*	Primary PAL*	Secondary ES*	Secondary PAL*	Exceedences in START 1998 Drinking Water Samples
Aluminum	NL	NL	NL	200	100	290 in DW-03.
Arsenic	50	50	5	NL	NĹ	None.
Chromium	100	100	50	NL	NI.	None.
Copper	1,300	1,300	650	000,1	500	548 in DW-03.
Lead	15	15	5	NL	NL	180 in DW-03.
Iron	NI.	NL	NL	300	150	2,460 in DW-01. 2,660 in DW-02. 37,800 in DW-03. 1,710 in DW-04. 379 in DW-05.
Manganese	NL	840	420	50	25	398 in DW-01. 434 in DW-02.
Nickel	NL	100	50	NL	NL	None.
Vanadium	NL	NL	NL	NL	NL	None.

* – All Values are in Parts Per Billion (ppb).

EPA - U.S. Environmental Protection Agency

MCI. = Maximum Contaminant Level; holded value indicates exceedence.

NL = Substance not listed in reference.

ES = State of Vermont Groundwater Quality Enforcement Standard; bolded value indicates exceedence.

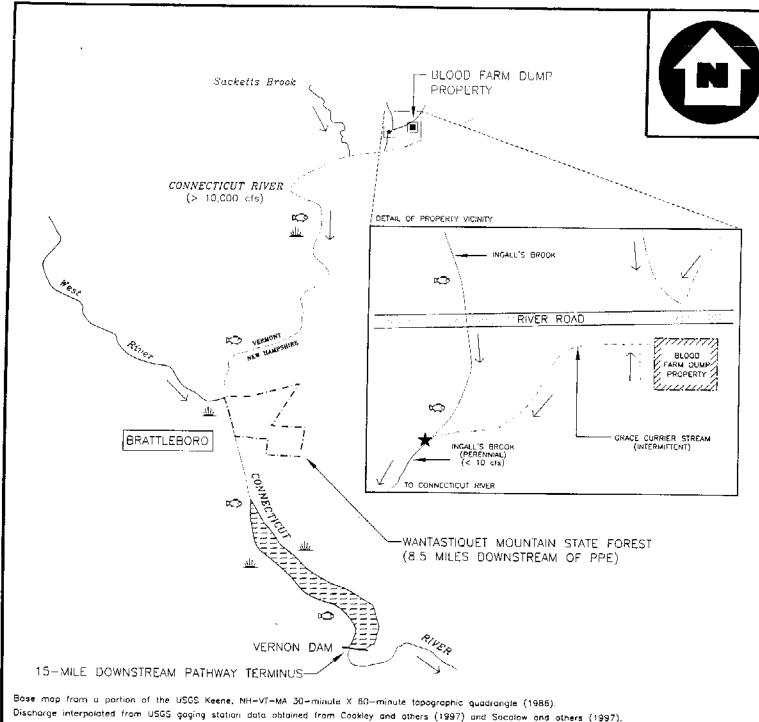
PAL = State of Vermont Groundwater Quality Preventive Action Level; bolded value indicates exceedence.

[36; 37]

START personnel informed EPA Region I of exceedences of the EPA MCL and the Vermont Primary Groundwater Quality Enforcement Standard for lead in sample DW-03 [38]. Sample DW-03 was collected from an overburden supply well located adjacent to the Grace Currier Stream streambed. EPA Region I informed the property owner of the exceedence, and the well has reportedly been taken off-line by the owner. Residents served by this overburden supply well (DW-03) also utilize a bedrock drinking water supply well located on Lot Nos. 63 and 64. Samples DW-01 and DW-02 were collected from this bedrock supply well.

Although exceedences of Vermont State standards were documented in drinking water samples, none of the inorganic elements detected in drinking water were documented above reference criteria in on-site sources (contaminated soils). In addition, most of the substances detected were noted in an overburden well for which no background was identified. START observed that this well is located within 10 ft of an intermittent streambed. During the START sampling event, the stream was not

flowing; however, surface water may directly enter this well or be a source of recharge for water in this well. Since none of the groundwater samples were filtered, the contribution of metal contamination due to particulates in the water and contact with pipes could not be ascertained. Based on historical and START analytical results, no release to groundwater (drinking water) from on-site soils has been documented to date.


SURFACE WATER PATHWAY

The 15-mile downstream pathway for the Blood Farm Dump property is comprised of one perennial stream and the Connecticut River. The perennial stream is unnamed on the U.S. Geological Survey (USGS) topographic map but is locally referred to as Ingall's Brook [8-13]. Surface water which befalls the property either infiltrates into the ground surface or flows overland to the west toward an intermittent stream, which is also unnamed on the associated USGS topographic map but is locally referred to as "Grace Currier Stream." Grace Currier Stream is located near the western portion of the Blood Farm Dump property. Grace Currier Stream intermittently flows west to its confluence with Ingall's Brook [2, p. 21]. The probable point of entry (PPE) to the surface water pathway is located along Ingall's Brook, at the confluence of Grace Currier Stream and Ingall's Brook. Ingall's Brook flows south for 0.4 miles until its confluence with the Connecticut River (Figure 3). The 15-mile downstream pathway terminus is located along the Connecticut River in the vicinity of the Vernon Dam [8-13].

According to a local concerned citizen, references in previous file information to "Baldwin Brook" actually refer to "Ingall's Brook". According to the citizen, "Baldwin Brook" is located on the mountain to the north of the Blood Farm Dump property and is not associated with the Blood Farm Dump property [2, p. 21].

The flow rates of the perennial surface water bodies along the 15-mile downstream surface water pathway were calculated by multiplying the square mileage of the drainage basin area by the USGS estimating factor of 1.8 cubic ft per second (cfs) per square mile (mi²). This factor is an estimate and average of the intensity, rate, and frequency of overland flow in New England. The mean annual flow rate for Ingall's Brook was estimated to be 2.4 cfs [48].

Flow rate data were also obtained from USGS Gaging Stations. The average annual flow rate of the Connecticut River is approximately 9,518 cfs at USGS Gaging Station No. 01154500 in North Walpole, New Hampshire, 14 miles upstream of the confluence of Ingall's Brook and the Connecticut River. The flow rate of the Connecticut River is presumed to be greater than 10,000 cfs at that confluence. Table 13 describes surface water bodies located along the 15-mile downstream pathway for the Blood Farm Dump property.

Discharge interpolated from USGS gaging station data obtained from Cookley and others (1997) and Socolow and others (1997).

LEGEND

PROBABLE POINT OF ENTRY (PPE)

FISHERY

WETLANDS

FLOW DIRECTION OF SURFACE WATER BODY

cfs CUBIC FEET PER SECOND

SURFACE WATER PATHWAY SKETCH

BLOOD FARM DUMP RIVER ROAD PUTNEY, VERMONT

REGION I SUPERFUND TECHNICAL ASSESSMENT AND RESPONSE TEAM

IDO No. DRAWN 8Y: 00-05-0048 C. SKLANEY

LAST MODIFIED: 09/21/98

File Name S:\00050048\BLOOD\SWPBFD.DWG

FIGURE 3

Table 13
Surface Water Bodies Along the 15-Mile Downstream Pathway from Blood Farm Dump

Surface Water Body	Descriptor ^a	Length of Reach (miles)	Flow Characteristics (cfs) ^b	Length of Wetland Frontage (miles)
Ingali's Brook*	Minimal stream	0.4	<10	0
Connecticut River	Large River	14.6	>10,000	2.3

- Minimal stream <10 cfs. Large river >10,000-100,000 cfs.
- b Cubic feet per second.
- * Also called "Baldwin Brook" in file information. Non-perennial water bodies (Grace Currier Stream) are not included in the above table.

[2, p. 35; 10-19]

The Connecticut River is classified as Class B Water according to the standards adopted by the Vermont Water Resources Board in accordance with the Vermont Statutes Annotated, Title 10, Section 1253. Class B Water is defined as surface water that is compatible with the following beneficial values and uses: recreational use including swimming; irrigation and other agricultural uses; public water supply with filtration and disinfection; and high quality habitat for aquatic biota, fish, and wildlife. The Connecticut River is known for its significant sport fishing for many species of fish. The river's spawning trout play an important role in supporting the seasonal and residential populations of the area. The Connecticut River supports considerable recreational boating [6, p. 8].

There are approximately 2.3 miles of wetland frontage, a State forest, a State-threatened species habitat, and a water body protected under the Clean Water Act located along the 15-mile downstream surface water pathway [2; 14-20]. Table 14 describes sensitive environments located along the 15-mile downstream pathway for the property.

Table 14

Sensitive Environments Along the 15-Mile Downstream Surface Water Pathway from Blood Farm Dump

Sensitive Environment Name	Sensitive Environment Type	Surface Water Body	Downstream Distance from PPE (miles)	Flow Rate at Environment (cfs) ^a
Clean Water Act	Clean Water Act	Ingall's Brook	0	<10
Wetlands	2.3 Miles Wetlands	Connecticut River	3.2 - 15	>10,000
Wantastiquet Mt. State Forest	.		8.5	> 10,000

Table 14
Sensitive Environments Along the 15-Mile Downstream Surface Water Pathway from Blood Farm Dump (Concluded)

Sensitive Environment Name	Sensitive Environment Type	Surface Water Body	Downstream Distance from PPE (miles)	Flow Rate at Environment (cfs) ^a
Engelmann's Quillwort	State-Threatened Species	Connecticut River*	3.2 - 15	> 10,000

*Cubic feet per second

PPE = Probable point of entry

* START assumes that the threatened species occurs along the Connecticut River, as the location is not specified by State personnel.

[2, p. 35; 10-21; 24]

The owner of the property abutting the western portion of the Blood Farm Dump property has installed PVC monitoring wells along Grace Currier Stream, Ingall's Brook, and the Connecticut River and has tested for general field parameters (such as conductivity) and conducted selected metals analyses using field test kits. Due to a lack of quality control and a lack of certified data, these sampling results cannot be used in this evaluation.

On 7 December 1998, START personnel collected surface water and sediment samples from Grace Currier Stream and Ingall's Brook as part of the Blood Farm Dump ESI. START surface water and sediment samples were analyzed by CLP and DAS laboratories for VOCs, SVOCs, pesticides, PCBs, total metals, and cyanide. Five sediment samples were also analyzed for dioxin by a DAS laboratory. Table 15 provides a summary of START surface water and sediment sample locations.

Sample Summary: Blood Farm Dump
Surface Water and Sediment Samples Collected by START on 7 December 1998

Sample Location No.	Traffic Report No.	Date/ Time (hrs)	Remarks	Sample Location	Sample Source			
MATRIX: Aqueous - Surface water								
SW-05*	ANY10 MALX40	12/7/9 8 1115	Grab	42° 57′ 49.2″ N 72° 30′ 47.7″ W	Grab surface water sample collected from Ingall's Brook south of the railroad tracks. Conductivity – 170 µmhos; T = 8 °C; Salinity = 0; pH = 5			
SW-06	ANY11 MALX41	12/7/98 1345	Grab	42° 58′ 13.1″ N 72° 30′ 20.5″ W	Reference grab surface water sample collected from Ingalt's Brook north of River Road. Conductivity 120 µmhos; T = 7 °C; Salinity 0; pH = 5			
SW-07	ANY12 MALX42	12/7/98 1310	Grab	42° 58′ 01.6″ N 72° 30′ 23.0″ W	Grab surface water sample collected from Ingall's Brook north of Interstate Route 91. Conductivity = 170 μmhos; T = 10 °C; Salinity = 0; pH = 5			
SW-08	ANY13 MALX43	12/7/98 1315	Grab	42° 58′ 01.6″ N 72° 30′ 23.0″ W	Replicate of surface water sample SW-07, collected for quality control. Conductivity = 170 µmhos; T - 10 °C; Salinity = 0; pH = 5			
MATRIX:	Sediment**							
SD-08*	DAF96F	12/7/98 1325	Grab	42° 58′ 01.7″ N 72° 30′ 22.9″ W Depth <6 inches	Sediment sample collected from Ingall's Brook; north of Interstate 91. Sample consisted of grey medium gravel with a little coarse sand, wet.			
SD-09	DAF97F	12/7/98 1355	Grab	42° 58′ 13.1″ N 72° 30′ 20.4″ W Depth <6 inches	Reference sediment sample collected from Ingall's Brook; north of River Road. Sample consisted of grey clay with some silt, trace gravel, wet.			
SD-10	DAF98F	12/7/9 8 1405	Grab	42° 58′ 13.1″ N 72° 30′ 20.3″ W Depth <6 inches	Sediment sample collected from Ingall's Brook; north of River Road as an additional reference for metals analysis only. Sample consisted of grey fine-to-medium gravel with a little silt, wet.			

Sample Summary: Blood Farm Dump
Surface Water and Sediment Samples Collected by START on 7 December 1998
(Continued)

	T	1						
Sample	Traffic	Date/						
Location No.	Report No.	Time	D am anter	Sample				
100.	NO.	(hrs)	Remarks	Location	Sample Source			
MATRIX: Sediment**								
SD-11	DAF99F	12/7/98 1140	Grab	42° 58′ 04.6″ N 72° 30′ 19.6″ W Depth <6 inches	Sediment sample collected from Grace Currier Stream bed; prior to the confluence of Grace Currier Stream and Ingall's Brook. Sample consisted of grey coarse sand with a little fine gravel (dry).			
SD-12	DAF46G	12/7/98 1115	Grab	42° 58′ 09.6″ N 72° 30′ 09.3″ W Depth <6 inches	Sediment sample collected from Grace Currier Stream bed; in the vicinity of the residential trailer (see Figure 2). Sample consisted of grey coarse sand and fine gravel, and a little clay (wet). Localized orange discoloration and an organic sheen on the surface water pools was observed.			
SD-13 ◆	DAF47G	12/7/98 0915	Grab	42° 58′ 10.2″ N 72° 30′ 00.2″ W Depth <6 inches	Sediment sample collected from Grace Currier Stream bed approximately 640 ft downstream from the access road to the Blood Farm Dump property. Medium brown sand with some silt and organic matter (roots), little clay (dry).			
SD-14 ◆	DAF48G	12/7/9 8 0930	Grah	42° 58′ 10.2″ N 72° 30′ 00.2″ W Depth <6 inches	Duplicate of sample SD-13 collected for quality control.			
SD-15 ◆	DAF49G	12/7/98 0945	Grab	42° 58′ 09.3″ N 72° 29′ 53.1″ W Depth <6 inches	Sediment sample collected from a low- lying intermittently wet area located west of the Blood Farm Dump property. Sample consisted of light brown silt with some sand (dry).			
SD-16 ◆	DAF50G	12/7/98 0905	Grab	42° 58′ 15.0″ N 72° 29′ 53.9″ W Depth <6 inches	Sediment sample collected from Grace Currier Stream bed; north of River Road. Sample appeared dark brown to black and consisted of gravel with coarse sand and some organic matter (saturated).			

Table 15

Sample Summary: Blood Farm Dump Surface Water and Sediment Samples Collected by START on 7 December 1998 (Concluded)

Sample Location No.	Traffic Report No.	Date/ Time (hrs)	Remarks	Sample Location	Sample Source
SD-17	DAF51G	12/7/98 0910	Grab	42° 58′ 15.0″ N 72° 29′ 54.0″ W Depth <6 inches	Sediment sample collected from Grace Currier Stream bed; north of River Road to serve as an additional reference sample for metals analysis only. Sample appeared dark brown to black and consisted of gravel with coarse sand and some organic matter (saturated).
SD-18 ◆	DAF52G	12/7/98 1115	Grab	42° 57′ 52.0″ N 72° 30′ 35.2″ W Depth <6 inches	Sediment sample collected from Ingall's Brook; south of the railroad tracks and north of Connecticut River. Sample consisted of grey organic rich fine sand and silt with some orange staining at the surface water/sediment interface.

hrs = Hours.

ft = Feet.

T = Temperature.

°C = Degrees Celsius.

μmhos = Micromilliohms.

- = Sample was also analyzed for dioxins.
- * Surface water samples SW-01 through SW-04 and sediment samples SD-01 through SD-07 were collected from Connecticut River specifically to evaluate the Putney Paper Company Sludge Disposal property and are not presented in this report.
- ** START sediment samples were field screened for volatile organic compounds using a Flame lonization Detector (FID). No readings above background levels (zero units) were recorded during field screening of START sediment samples collected for the Blood Farm Dump property on 7 December 1998.

[21]

Complete analytical results of START surface water and sediment samples collected for the Blood Farm Dump property, including quantitation and detection limits, are presented in Attachment C. Sample results qualified with a "J" on analytical tables are considered approximate because of limitations identified during CLP data validation. In addition, organic sample results reported at concentrations below quantitation limits and confirmed by mass spectrometry are also qualified by a "J" and considered approximate.

Table 16 is a summary of organic compounds and inorganic elements detected through CLP and DAS analyses of START surface water and sediment samples collected for the Blood Farm Dump property. For each sample location, a compound or element is listed if it is detected at three times

or greater than the reference sample concentration. Sediment samples SD-09, SD-10, SD-16, and SD-17 serve as reference locations for sediment samples. Surface water sample SW-06 serves as a reference for surface water samples. If the compound or element is not detected in the reference sample, the reference sample's SQL (for organic analyses) or SDL (for inorganic analyses) is used as the reference value. These compounds or elements are listed if they occurred at a value equal to or greater than the reference sample's SQL or SDL and are designated by their approximate relative concentration above these values.

Table 16

Summary of Analytical Results
Surface Water and Sediment Sample Analysis for Blood Farm Dump

Sample Location	Compound/ Element	Sample Concentration			Reference Concentration			Comments				
SW-05 ANY10 MALX40	INORGANICS											
	Selenium	5		ppb	5	U	ppb	! × SDL				
SW-07 ANY12 MALX42	INORGANICS											
	Aluminum	833	J	ррь	39	UJ	ppb	21.4 × SDL				
	Iron	7,180		ppb	215		ppb	33.4× Ref				
	Manganese	511		ррь	90.8		ppb	5.6 × Ref				
	Nickel	2.3		ppb	1	U	ppb	2.3 × SDL				
SW-08 ANY13 MALX43	INORGANICS											
	Aluminum	1,440		ppb	39	U.I	ppb	36.9 × SDL				
	Chromium	3.4	J	ppb	2	U	ppb	1.7 × SDL				
	Iron	9.220		ррь	215		ppb	42.9 × Ref				
	Manganese	418		ppb	90.8		ppb	4.6 × Ref				
	Nickel	3.5		ppb	1	U	pph	3.5 × SDL				
SD-13 DAF47G	DIOXIN											
	1,2,3,4,6,7,8-HpCDD	6.76	J	ppt	0.749	UJ	ppt	9.0 × SDL				
	OCDD	68.7	J	ppt	7.39	UI	ppt	9.3 × SDL				
 	2.3.7.8-TCDF	0.705		ppt	0.161	 _UJ	ppt	4.4 × SDL				

Table 16

Summary of Analytical Results
Surface Water and Sediment Sample Analysis for Blood Farm Dump (Concluded)

Sample Location	Compound/ Element	Sample Concentration	Reference Concentration	Comments	
SD-14	DIOXIN				
DAF48G	1,2,3,4,6,7,8-HpCDD	6.67 J ppt	0.749 UJ ppt	8.9 × SDL	
	1,2,3,4,6,7,8-HpCDF	4.04 J ppt	0.680 UJ ppt	5.9 × SDL	
	OCDD	59.1 J ppt	7.39 UJ ppt	8.0 × SDL	
SD-15	DIOXIN				
DAF47G	2,3,7,8-TCDF	1.02 J ppt	0.161 UJ ppt	6.3 × SDL	

Ref = Reference value.

SDL = Sample Detection Limit.

J = Quantitation is approximate due to limitations identified during the quality control review.

U = Indicates the sample was analyzed but not detected and reports the detection value.

UJ - The reported quantitation limits are qualified estimated.

ppb = Parts per billion. ppt = Parts per trillion.

[30; 39-42]

Six different inorganic elements were detected at concentrations exceeding reference criteria in START surface water samples. The inorganic elements detected in surface water samples were not detected at concentrations exceeding reference criteria in START sediment samples collected from corresponding locations or START surficial soil/source samples collected from the Blood Farm Dump property. Based on lack of attribution of these inorganic elements to on-site sources, a release to the surface water pathway has not been documented. However, dioxin was detected in sediment samples collected from Grace Currier dry streambed, and in on-site soil/source samples. Grace Currier Stream is not a perennial water body (intermittent), and samples collected from Grace Currier Stream cannot be used to evaluate the surface water pathway [30; 39-42].

Based on START surface water and sediment sample analytical data for samples collected from perennial water bodies on 7 December 1998, no substances attributable to on-site sources at the Blood Farm Dump property have been released to Ingall's Brook, and no known downstream receptors have been impacted.

SOIL EXPOSURE PATHWAY

On 2 April 1998, START personnel conducted an on-site reconnaissance of the Blood Farm Dump property [2, pp. 16-29]. START personnel observed a single abandoned residence, a dirt driveway, and grassy open spaces on Lot No. 60.1. Lot No. 60 was occupied by a residence and dog kennel business [2, pp. 15, 22]. START personnel did not observe any stressed vegetation, or terrestrial

sensitive environments at the time of the on-site reconnaissance. START personnel did observe areas of grey, clay-like material intermixed with surficial soils on Lot No. 60.1. There are no schools or day-care facilities located within 200 ft of any potential source area [2, p. 22]. Although there is fencing along Interstate Route 91 and along the western border of the property, the remainder of the property is unfenced [2, p. 22]. For the purposes of this evaluation, access to the property is considered unrestricted [2, p. 16].

On 8 November 1998, the abandoned residence located on Lot No. 60.1 was burned as part of fire training exercises conducted by several local area fire departments. START personnel observed the fire-fighting exercises and noted that very little runoff was generated and that there was no visible impact to Grace Currier Stream [2, pp. 36, 37]. START personnel additionally noted that the majority of smoke generated during on-site activities drifted in a southeasterly direction and did not significantly impinge upon the ground surface [25].

There are no employees or on-site residents associated with Lot No. 60.1 [2, pp.15, 16]. There are two on-site residents, who also work on site, and one additional on-site employee, associated with Lot No. 60 [2, p. 17]. An estimated 421 people reside within 1-radial mile of the Blood Farm Dump property [7].

In May 1990, soil boring samples were collected as part of the VT DEC SI to assess the sludge deposited on the Blood Farm Dump property [6]. Analytical results of VT DEC sludge samples indicated the presence of VOCs, PCBs, lead, and zinc at concentrations exceeding reference criteria. Refer to the Waste/Source Sampling section of this report for a discussion of analytical results for the VT DEC SI soil boring samples.

On 7 December 1998, START personnel collected seven surficial soil/source samples from the Blood Farm Dump property [21, pp. 9-69]. Based on START soil/source analytical results, one VOC; one SVOC; one PCB; four pesticides; two metals; cyanide; and 13 dioxin congeners were detected in on-site surficial soils. Refer to the Waste/Source section of this report for further discussion of START surficial soil sampling analytical results.

Although, the majority of the former source pile has been removed, START surficial soil sampling analytical results have documented residual contamination in the surficial soils. To date, no remedial actions have been taken to address residual surficial soil contamination. Access to the property is unrestricted, and it is unknown if nearby (or trespassing) populations have been impacted by the release to surficial soils.

AIR PATHWAY

An estimated 421 people reside within 1-radial mile of the Blood Farm Dump property [7]. The population within 4-radial miles of the property was estimated using equal distribution calculations of CENTRACTS data identifying population and households, for U.S. Census "Block Groups" which lie wholly or in part within individual radial distance rings measured from potential sources on the property. There are an estimated 3,853 people residing within 4-radial miles of the Blood Farm Dump property [7]. Table 17 summarizes the population within 4-radial miles of the Blood Farm Dump property.

Table 17

Estimated Population Within 4-Radial Miles of Blood Farm Dump

Radial Distance from Blood Farm Dump (miles)	Estimated Population
On a Source	2
> 0.00 to 0.25	24
> 0.25 to 0.50	79
> 0.50 to 1.00	316
> 1.00 to 2.00	604
> 2.00 to 3.00	1,195
> 3.00 to 4.00	1,633
TOTAL	3,853

[2; 7]

Sensitive environments located within 4-radial miles of the Blood Farm Dump property are summarized in the Table 18.

Table 18

Sensitive Environments Located Within 4-Radial Miles of Blood Farm Dump

Radial Distance from Blood Farm Dump (miles)	Sensitive Environment/Species (status)
On a Source	0 acres wetlands
> 0.00 to 0.25	Clean Water Act
> 0.25 to 0.50	I acre wetlands
> 0.50 to 1.00	15 acres wetlands
> 1.00 to 2.00	72 acres wetlands
> 2.00 to 3.00	51 acres wetlands
> 3.00 to 4.00	122 acres wetlands

[14-20]

On 2 April 1998, START personnel conducted ambient air monitoring during the on-site reconnaissance of the Blood Farm Dump property using a photoionization detector (PID) and a flame ionization detector (FID). No readings greater than background levels were recorded in ambient air [2, pp. 22-23]. In addition, headspace screening of some of the PVC monitoring wells were conducted; START did not record any readings above background. In a few of the PVC monitoring wells, START did observe a "negative" deflection (of about 1 unit) on the FID.

On 8 November 1998, START personnel observed the fire-fighting training exercises conducted at the Blood Farm Dump property. START personnel photodocumented the fire training activities. The majority of smoke generated during on-site activities was observed to drift in a southeasterly direction and was not observed to significantly impinge upon the ground surface [25].

On 6 and 7 December 1998, START personnel conducted sampling activities at the Blood Farm Dump property and conducted ambient air monitoring using a PID, FID, radiation meter, and combustible gas indicator per health and safety requirements. No ambient air readings at concentrations above background levels were recorded [21, pp. 9-69].

Based on a review of file information, no known quantitative (laboratory analyzed) air samples have been collected at the Blood Farm Dump property to date. Based on a lack of analytical data, no release of hazardous substances to the ambient air from on-site sources has been documented. Based on the property history, property usage, and the source type (vegetated contaminated soil), no impacts to nearby residential populations or sensitive environments are known or suspected.

SUMMARY

The Blood Farm Dump property is located along River Road in Putney, Windham County, Vermont. The geographic coordinates for the property, as measured from the center of the property, are 42° 58′ 11.3″ north latitude and 72° 29′ 46.0″ west longitude. The original property was comprised of a 5.4-acre lot that was later subdivided into a 2-acre lot and a 3.4-acre lot. The 2-acre lot is currently owned by the Putney Paper Company (PPC) and is denoted by the Putney Tax Assessor's Office as Map/Lot No. 08-02-60.1 (Lot No. 60.1). The 2-acre lot is occupied by the foundation of a former on-site residence. The 3.4-acre lot is currently owned by Ms. Saskia Whallon and is denoted by the Putney Tax Assessor's Office as Map/Lot No. 08-02-60 (Lot No. 60). The building located on the 3.4-acre lot is currently occupied by an apartment and a dog kennel business.

An estimated 2,000 cubic yards of paper mill sludge, generated by PPC at its off-site mill facility, were reportedly disposed of on the western portion of the property in Summer 1978. The pile of paper sludge was reportedly removed in the early 1990s, possibly 1992. However, a local concerned citizen alleges that the pile was never removed and was spread over the Blood Farm Dump property. File information does not indicate that any disposal took place on Lot No. 60 (the eastern portion of the former original Blood Farm Dump property).

On 2 April 1998, Roy F. Weston, Inc. (WESTON®), Superfund Technical Assessment and Response Team (START) personnel conducted an on-site reconnaissance of the Blood Farm Dump property. START personnel observed a single abandoned residence, a dirt driveway, and grassy open spaces on Lot No. 60.1. Lot No. 60 was occupied by a residence and dog kennel business. No piles were observed on the portion of Blood Farm Dump previously noted in the file information; however, START personnel did observe a grey, clay-like material intermixed with surficial soils on Lot No. 60.1. During the reconnaissance, START personnel noted that the owner of the western abutting property has installed an estimated 200 to 250 polyvinyl chloride monitoring wells on the parcel west of the Blood Farm Dump property and along portions of the downstream surface water pathway associated with the Blood Farm Dump property. Reportedly, the monitoring wells were installed by the owner of the adjacent property abutting the western portion of the Blood Farm Dump property to assess environmental impacts from the Blood Farm Dump property and the nearby Putney Paper Company Sludge Disposal property.

On 6 and 7 December 1998, START personnel completed a sampling event for the Blood Farm Dump property Expanded Site Inspection (ESI). START personnel collected nine drinking water samples, seven surficial soil/source samples, four surface water samples, and 11 sediment samples as part of the ESI. Samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), pesticides, polychlorinated biphenyls (PCBs), total metals, and cyanide. Selected samples were also analyzed for dioxins.

The property is underlain by fine-grained stratified glacial drift that has a low potential for groundwater development. However, some wells in the surficial deposits can reportedly be expected to yield sufficient water for domestic use. The surficial materials on the property are mapped as pebbly-sand littoral glacial lake deposits; south of the property, the materials are mapped as postglacial fluvial sands. The underlying bedrock is slate, phyllite, and mica schist with interbedded quartzite of the Devonian Littleton formation. There are no on-site monitoring wells located on the Blood Farm Dump property, and groundwater flow direction beneath the Blood Farm Dump property

has not been determined to date, but is presumably south and west, towards the Connecticut River and Grace Currier Stream, respectively. Based on START drinking water sample analytical results, no impacts to private drinking water supply wells in the vicinity of the Blood Farm Dump property from on-site sources has been documented to date.

Grace Currier Stream, an intermittent stream located west of the Blood Farm Dump property, directs surface water west toward a perennial stream, Ingall's Brook. The confluence of Grace Currier Stream and Ingall's Brook is the most likely, most upstream probable point of entry (PPE) for contamination to enter the surface water pathway associated with the Blood Farm Dump property. Ingall's Brook flows 0.4 miles south to the Connecticut River, which comprises the remaining 14.6 miles of the 15-mile downstream surface water pathway.

On 8 November 1998, the abandoned on-site residence was burned as part of on-site fire training exercises conducted by several local area fire departments. START personnel observed the fire-fighting exercises and noted that very little runoff was generated from on-site exercises and that there was no visible impact to Grace Currier Stream. START personnel also noted that the majority of smoke generated during on-site activities drifted in a southeasterly direction and did not significantly impinge upon the ground surface. It is unknown if subsequent precipitation events caused residual contaminants to flow into Grace Currier Stream.

Based on START surface water and sediment sample analytical results, no impacts to the downstream surface water pathway were documented from on-site sources. Dioxin congeners, which are at least partially attributable to the Blood Farm Dump property, were detected in sediment samples collected from Grace Currier Stream, a non-perennial water body.

START surficial soil/source sample analytical results documented the presence of one SVOC (which was also detected in the equipment blank sample), four pesticides, the PCB compound Aroclor-1254, two inorganic elements, cyanide, and 13 dioxin congeners in surficial soils at Blood Farm Dump in the alleged area of paper sludge disposal. Based on START sampling results, a release of hazardous substances to surficial soils at the Blood Farm Dump property has been documented. To date, no known remedial actions (except removal of the pile) have been taken to address the release to on-site soils. A local concerned citizen alleges that the pile was never removed and was spread out over the property.

There are no schools or day-care facilities located within 200 feet of any potential source area. There are no on-site residents or workers located on Lot No. 60.1. There are two on-site residents, who also work on site, and one additional on-site worker associated with Lot No. 60. An estimated 421 people reside within 1-radial mile of the Blood Farm Dump property. Analytical results of START surficial soil samples document a release of hazardous substances to on-site surficial soils. Access to the property is unrestricted and it is unknown if nearby populations have been impacted by this release.

BLOOD FARM DUMP REFERENCES

- [1] Sklaney, C. (START). 1998. Memorandum, RE: Blood Farm Dump Property Coordinates Calculations. TDD No. 98-01-0001. 2 June.
- [2] START. 1998. Field Logbook for Putney Paper Company Sludge Disposal (and Blood Farm Dump) Expanded Site Inspection Logbook No. 00269-S. TDD No. 98-01-0001.
- [3] Town of Putney, Vermont Tax Assessor's Map listing for Blood Farm Dump (08-02-60.1). Obtained by START in February 1998.
- [4] Laferte, D. (START). 1998. Phone Conversation Record with Putney, Vermont Assessor's Office, RE: Property Ownership. TDD No. 98-01-0001. 6 February.
- [5] Hazardous Materials Management Division, Department of Environmental Conservation, Vermont Agency of Natural Resources. 1989. <u>Preliminary Assessment for Blood Farm Dump, River Road</u>, Putney, Vermont. 28 December.
- [6] Hazardous Materials Management Division, Department of Environmental Conservation, Vermont Agency of Natural Resources. 1993. <u>Site Inspection Report for Blood Farm Dump. River Road</u>, Putney, Vermont. 1 February.
- [7] Frost Associates. 1998. Project Note, Blood Farm Dump, RE: Population and Private Well Users (New Hampshire and Vermont Portions). TDD No. 98-01-0001. 5 June.
- USGS (U.S. Geological Survey). Provisional Edition, 1984. Newfane, Vermont-New Hampshire (7.5 × 15-minute series topographic map).
- [9] USGS (U.S. Geological Survey). Provisional Edition, 1984. Brattleboro, Vermont-New Hampshire (7.5 × 15-minute series topographic map).
- [10] USGS (U.S. Geological Survey). Provisional Edition, 1984. Winchester, New Hampshire-Vermont (7.5 × 15-minute series topographic map).
- [11] USGS (U.S. Geological Survey). Provisional Edition, 1985. Walpole, New Hampshire-Vermont (7.5 × 15-minute series topographic map).
- [12] USGS (U.S. Geological Survey). Provisional Edition, 1984. Keene, New Hampshire-Vermont (7.5 × 15-minute series topographic map).
- [13] USGS (U.S. Geological Survey). Provisional Edition, 1984. Townshend, Vermont (7.5 × 15-minute series topographic map).

BLOOD FARM DUMP REFERENCES (Continued)

- [14] FWS (U.S. Department of the Interior, Fish and Wildlife Service). 1991. National Wetlands Inventory Map. West Half of Brattleboro, VT Quadrangle.
- [15] FWS (U.S. Department of the Interior, Fish and Wildlife Service). 1995. National Wetlands Inventory Map. West Half of Winchester, VT Quadrangle.
- [16] FWS (U.S. Department of the Interior, Fish and Wildlife Service). 1995. National Wetlands Inventory Map. West Half of Walpole, VT Quadrangle.
- [17] FWS (U.S. Department of the Interior, Fish and Wildlife Service). 1995. National Wetlands Inventory Map. East Half of Newfane, VT Quadrangle.
- [18] FWS (U.S. Department of the Interior, Fish and Wildlife Service). 1995. National Wetlands Inventory Map. West Half of Keene, VT Quadrangle.
- [19] FWS (U.S. Department of the Interior, Fish and Wildlife Service). 1994. National Wetlands Inventory Map. East Half of Townsend, VT Quadrangle.
- [20] FWS (U.S. Department of the Interior, Fish and Wildlife Service). 1995. National Wetlands Inventory Map. East Half of Brattleboro, VT Quadrangle.
- [21] START. 1999. Field Logbook for Putney Paper Company Sludge Disposal (and Blood Farm Dump) Expanded Site Inspection Logbook No. 00358-S. TDD No. 98-05-0230.
- [22] Waste Management Division, Department of Environmental Conservation, Vermont Agency of Natural Resources. 1997. Final Site Inspection Report for Putney Paper Company Sludge Landfill, Putney, Vermont. December.
- [23] Waste Management Division, Department of Environmental Conservation, Vermont Agency of Natural Resources. 1997. Project Note, RE: Public Water Supplies Located within 4-Radial Miles of the Putney Paper Company Sludge Disposal property. December.
- [24] Rose, K. (Vermont Fish & Wildlife). 1998. Letter to Ms. Denise Laferte RE: threatened and endangered species for Putney Paper Co. Sludge Disposal and Blood Farm Dump. 22 September.
- [25] Keefe, D. (START). 1998. Photograph Nos. 1 through 16 of On-site Fire-Fighting Training Exercises at the Blood Farm Dump Property. TDD No. 98-01-0001. 8 November.

\$\langle \text{S}\langle \text{8010001}\blood\blood\blood\frac{1}{10001}\blood\blood\blood\frac{1}{10001}\blood\blood\frac{1}{10001}\blood\blood\frac{1}{10001}\blood\frac{1}{100

BLOOD FARM DUMP REFERENCES (Continued)

- [26] EPA (U.S. Environmental Protection Agency). 1998. Resource Conservation and Recovery Information System (RCRIS) Superfund Program, Region I. Printout dated 30 September.
- [27] EPA (U.S. Environmental Protection Agency). 1998. Comprehensive Environmental Response, Compensation, and Liability Information Systems Superfund Program Region I. Printout dated: 7 August.
- [28] Killian, P. (START). 1999. Putney Paper Company Sludge Disposal Organic Soil Data Validation Package for Case No. 26713; Sample Delivery Group (SDG) No. APP02. Ceimic Corporation. Data validated by Kirit Bhatt (Tetra Tech EM Inc.). 10 June.
- [29] Killian, P. (START). 1999. Putney Paper Company Sludge Disposal Inorganic Soil Data Validation Package for Case No. 26713; Sample Delivery Group (SDG) No. MALX66. Chemtech Consulting Group. Data validated by Harry V. Ellis III (Tetra Tech EM, Inc.). 16 April.
- [30] Macri, L. (ESAT). 1999. Putney Paper Company Sludge Disposal Dioxin Data Validation Package for Case No. 0215F; Sample Delivery Group (SDG) No.DAF12H Southwest Research Institute. Data validated by Maria Baca (Lockhead Environmental). 22 February.
- [31] Laferte, D. (START). 1999. Phone Conversation Record with VT DEC/ANR, RE: Soil Standards for Vermont. 9 July.
- [32] EPA Region 3 (U.S. Environmental Protection Agency Region 3). 1999. Risk Based Concentration Table. 12 April.
- [33] Killian, P. (START). 1999. Putney Paper Company Sludge Disposal Low-Level Organic Drinking Water Data Validation Package for Case No. 0213F; Sample Delivery Group (SDG) No. DAF85G. EAS Laboratores. Data validated by Kerri Cattabriga (Weston/START). 28 April.
- [34] Killian, P. (START). 1999. Putney Paper Company Sludge Disposal Organic Drinking Water Data Validation Package for Case No. 26713; Sample Delivery Group (SDG) No. APP02. Ceimic Corporation. Data validated by Harry V. Ellis III (Tetra Tech EM Inc.). 16 April.

S \98010001\blood\bloodfnf.wpd 20 February 2001

BLOOD FARM DUMP REFERENCES (Continued)

- [35] Killian, P. (START). 1999. Putney Paper Company Sludge Disposal Inorganic Drinking Water Data Validation Package for Case No. 26713; Sample Delivery Group (SDG) No. MALX57. Chemtech Consulting Group. Data validated by Harry V. Ellis III (Tetra Tech EM Inc.). 16 April.
- [36] State of Vermont Agency of Natural Resources Department of Environmental Conservation. 1997. Chapter 12 Groundwater Protection Rule and Strategy, Rule No. 97-P14. 15 November.
- [37] U.S. Environmental Protection Agency (Office of Emergency and Remedial Response). 1996. Superfund Chemical Data Matrix. June.
- [38] Laferte, D. (START). 1999. Direct Contact Potential Memorandum to the U.S. Environmental Protection Agency for Putney Paper Co. Sludge Disposal and Blood Farm Dump Drinking Water Sample. 16 March.
- [39] Killian, P. (START). 1999. Putney Paper Company Sludge Disposal Organic Surface Water Data Validation Package for Case No. 26713; Sample Delivery Group (SDG) No. ANY00. Ceimic Corporation. Data validated by Kirit Bhatt (Tetra Tech EM Inc.). 10 June.
- [40] Killian, P. (START). 1999. Putney Paper Company Sludge Disposal Inorganic Surface Water Data Validation Package for Case No. 26713; Sample Delivery Group (SDG) No. MALX36. Chemtech Consulting Group. Data validated by Harry V. Ellis III (Tetra Tech EM Inc.). 16 April.
- [41] Killian, P. (START). 1999. Putney Paper Company Sludge Disposal Organic Sediment Data Validation Package for Case No. 0214F; Sample Delivery Group (SDG) No. DAF89F_O. Severn Trent Laboratories (STL, Chicago). Data validated by Kirit Bhatt (Tetra Tech EM Inc.). 10 June.
- [42] Killian, P. (START). 1999. Putney Paper Company Sludge Disposal Inorganic Sediment Data Validation Package for Case No. 0214F; Sample Delivery Group (SDG) No. DAF46G_I. Chemtech Consulting Group. Data validated by Harry V. Ellis III (Tetra Tech EM Inc.). 16 April.
- Vermont Water Quality Standards. Adopted 2 April 1997 Effective 21 April 1997. Accessed Via Internet at http://www.state.vt.us/wtrboard/rules/vwqs.htm and h:/myfiles/wqs/dqs draft criteria table APP 072398.wpd on 24 June 1999.
- [44] Bocmig, Peter R. (Southern Vermont Engineering). 1980. Sanitary Landfill for Putney Paper Co., Inc. 2 September.

\$398010001MbloodMbloodfiil.wpd 20 February 2001

BLOOD FARM DUMP REFERENCES (Concluded)

- [45] Aloisi, Williams, F. (Putney Paper Co. Inc.). 1983. Sludge Landfill for Putney Paper Co., Inc. 22 August.
- [46] US DOC (U.S. Department of Commerce). 1990. Census of Population and Housing, New Hampshire.
- [47] US DOC (U.S. Department of Commerce). 1990. Census of Population and Housing, Vermont.
- [48] Lenard S. (START). 2000. Project Note for Putney Paper Company Sludge Disposal, Re: Flow Calculations for Ingail's Brook. TDD No. 00-05-0048, 1 May.

SA98010001\blood\b

ATTACHMENT A

BLOOD FARM DUMP

SURFICIAL SOIL/SOURCE SAMPLE ANALYTICAL RESULTS START

Samples Collected 6 December 1998

CASE: 26713 SDG: APP02

LABORATORY: CEIMIC CORPORATION

TABLE 2 VOLATILE SOIL ANALYSIS - LOW LEVEL' pg/kg

ďΕ

SAMPLE NUMBER: SAMPLE LOCATION: LABORATORY NUMBER:		APP11 SO-03 981006-10	APP12 SO-04 981006-11	APP13 SO-05 981006-12	APP14 SO-06 981006-13	APP15 SO-07 981006-14	APP16 SO-08 981006-15
COMPOUND	CRQL						
Chloromethane	10	13 U	13 U	13 U	13 U	27 U	12 U
Bromomethane	10	13 U	13 U	13 U	13 U	27 U	12 U
Vinyl Chloride	10	13 U	13 U	13 U	13 U	27 U	12 U
Chloroathane	10	13 UJ	13 UJ	13 UJ	เจี กา	27 U	12 U
Methylene Chloride	10	4 J	13 U	8 J	9 J	27 U	12 U
Acetone	10	13 U	13 U	13 U	13 U	430	12 U
Carbon Disulfide	10	13 UJ	13 UJ	13 UJ	13 LJ	27 U	12 U
1,1-Dichloroethene	10	13 UJ	13 UJ	13 UJ	13 UJ	27 U	12 U
1,1-Dichloroethane	10	13 U	13 U	13 U	13 U	27 U	12 U
1,2-Dichloroethene (Total)	10	13 U	13 U	13 U	13 U	27 U	12 U
Chloroform	10	13 U	13 U	13 U 13 U	13 U 13 U	27 U 27 U	12 U 12 U
1,2-Dichloroethane	10	13 U	13 U 13 U	13 U 13 U	13 D 13 U	27 U 27 U	12 U
2-Butanone	10	13 U 13 U	13 U	13 UJ	13 U	27 U	12 U
1,1,1-Trichloroethane	10	13 U	13 U	13 UJ	13 U	27 U	12 U
Carbon Tetrachloride	10 10	13 U	13 U	13 UJ	13 U	27 U	12 U
Bromodichloromethane	10	13 U	13 U	13 UJ	13 U	27 U	12 U
1,2-Dichloropropane	10	13 U	13 U	13 UJ	13 U	27 U	12 U
cis-1,3-Dichtoropropene	10	13 U	13 LU	13 UJ	13 U	27 Ú	12 U
Trichloroethene	10	13 U	13 U	13 UJ	13 U	27 U	12 U
Dibromochloromethane	10	13 U	13 U	13 UJ	13 U	27 U	12 U
1,1,2-Trichloroethane	10	13 U	13 111	13 UJ	13 U	27 U	12 U
Benzene	10	13 U	13 U	13 UJ	13 U	27 U	12 U
trans-1,3-Dichloropropene Bromoform	10	13 U	13 U	13 UJ	13 U	27 U	12 U
	10	13 U	13 U	13 UJ	13 U	27 U	12 U
4-Methyl-2-pentanone	10	13 U.J	13 UJ	13 UJ	13 UJ	27 UJ	12 UJ
2-Hexanone Tetrachloroethene	10	13 U	13 U	13 UJ	13 U	27 U	12 U
	10	13 U	13 U	13 UJ	13 U	27 U	12 U
1,1,2,2-Tetrachloroethane Toluene	10	13 U	13 UJ	13 UJ	13 U	27 U	12 U
Chlorobenzene	10	13 U	13 UJ	13 UJ	13 U	27 U	12 U
Ethylbenzene	10	13 U	13 U	13 UJ	13 IJ	27 U	12 U
Styrene	10	13 U	13 U	13 UJ	13 0	27 U	12 U
Xylene (lotal)	10	13 Ü	13 Ŭ	13 UJ	13 U	27 U	12 Ŭ
DILUTION FACTOR: DATE SAMPLED: DATE ANALYZED: % MOISTURE:		1.0 12/06/98 12/09/98 23	1.0 12/06/98 12/09/98 25	1.0 12/06/98 12/09/98 25	1.0 12/06/98 12/09/98 23	2.0 12/06/98 12/10/98 25	1.0 12/06/98 12/10/98 16

NOTE: RESULTS ARE REPORTED ON A DRY WEIGHT BASIS.

CASE: 26713 SDG: APP02

LABORATORY: CEIMIC CORPORATION

TABLE 1 VOLATILE AQUEOUS ANALYSIS pg/L

SAMPLE NUMBER: SAMPLE LOCATION: LABORATORY NUMBER:		APP17 RB-03 981006-16	APP18 TB-01 981006-17
COMPOUND	CRQL		
Chloromethane	10	10 U	10 U
Bromomethane	10	10 UJ	10 UJ
Vinyl Chloride	10	10 U	10 U
Chloroethane	10	10 U	10 U
Methylene Chloride	10	10 U	10 U
Acetone	10	10 UJ	10 UJ
Carbon Disulfide	10	10 U	10 UJ
1,1-Dichloroethene	10	10 U	10 U
1,1-Dichloroethane	10	10 U	10 U
1,2-Dichloroethene (Total)	10	10 U	10 U
Chloreform	10	10 U	
1,2-Dichloroethane	10	10 U	10 U 10 U
2-Butanone	10	10 UJ	
1,1,1-Trichloroethane	10	10 U	10 UJ
Carbon Tetrachloride	10	10 U	10 U 10 U
Bromodichloromethane	10	10 U	10 U
1,2-Dichloropropane	10	10 U	10 U
cis-1,3-Dichloropropene	10	10 U	10 U
Trichloroethene	10	10 U	10 U
Dibromochloromethane	10	10 U	10 U
1,1,2-Trichloroethane	10	10 U	10 U
Benzene	10	10 U	
trans-1,3-Dichloropropene	10	10 U	10 U 10 U
Bromoform	10	10 U	10 U
4-Methyl-2-pentanone	10	10 U	10 U
2-Hexanone	10	10 U	
Tetrachloroethene	10	10 U	10 U
1,1,2,2-Tetrachloroethane	10	10 U	10 U
Toluene	10	10 U	10 U
Chlorobenzene	10	10 U	10 U
Ethylbenzene	10	10 U	10 U
Styrene	10	10 U	10 U
Xylene (total)	10	10 U	10 U 10 U
DILUTION FACTOR: DATE SAMPLED: DATE ANALYZED:		1.0 12/06/98 12/10/98	1.0 12/06/98 12/10/98

SITE: PUTNEY PAPER COMPANY SLUDGE DISPOSAL CASE: 28713 SDG: APP02 LABORATORY: CEIMIC CORPORATIO

TABLE 4 SEMIVOLATILE SOIL ANALYSIS µg/kg

SAMPLE NUMBER: SAMPLE LOCATION: LABORATORY NUMBER;		APP11 \$0-03 981006-10	APP12 SO-04 981006-11	APP13 SO-05 981008-12	APP14 SO-08 \$81008-13	APP15 SO-07 981005-14	APP16 SO-08 981008-15
COMPOUND	CRQL						
Phenol bis(2-Chloroethyi)ether 2-Chlorophenol	330 330 330	860 U 860 U 860 U	870 U 870 U 870 U	870 U 870 U 870 U	810 U 810 U	810 U 810 U	1900 U 1900 U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	330 330	860 U 860 U	870 U 870 U	870 U 870 U	810 ป 810 ป 810 U	810 U 810 U 810 U	1900 U 1900 U 1900 U
1,2-Dichlorobenzene 2-Methyiphenol	330 330	860 U 860 U	870 U	870 U 870 U	810 U 810 U	810 U 810 U	1900 U 1900 U
2,2'-Oxybis(1-chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine	330 330 330	860 U 860 U 860 UJ	870 UJ 870 U 870 U	870 UJ 870 U 870 U	010 UJ 016 U 018	810 U 810 U 810 U	1900 U 1900 U
Hexachloroethane Nitropenzene	330 3 30	860 U	870 U 870 U	870 U 870 U	810 U 810 U	810 U 810 U	1900 U 1900 U 1900 U
Isophorone 2-Nitrophenol	330 330	850 U 860 U	870 U 870 U	870 U	61a U 810 U	810 U 810 U	1900 U 1900 U
2,4-Dimethyrpherici bis(2-Chloroethoxy)methane 2,4-Dichloropheriol	330 330 330	880 U 880 U 860 U	870 U 870 U 870 U	870 ∪ 870 ∪ 870 ∪	810 ป 810 ป 810 ป	810 ປ 810 ປ 810 ປ	1900 U 1900 U 1900 U
1,2,4-Trichtoropenzene Naphthaidne	330 330	860 U	870 U 870 U	870 U 870 U	810 U 810 U	810 U 810 U	1900 U 1900 U
4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol	330 330 330	068 U 068 U 068	870 U 870 U	870 U 870 U	810 U 810 U	810 UJ 810 U	1900 UJ 1900 U
2-Methylnaphthalene Hexachlorocyclopentadiene	330 330	960 U U 088	870 U 870 U 870 U	870 ⊔ 870 ∪ 870 ∪	810 U U 018 U 018	0.18 U 0.18 UU 0.18	1900 U 1900 U 1900 U
2,4,5-Trichforoppenat 2,4,5-Trichforoppenat	330 830 330	860 U 2200 U	870 U 2200 U	870 U 2200 U	810 U 2000 U	810 U 2000 U	1900 U 4800 U
2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate	830 330	850 U 2200 U 860 U	870 U 2290 U 870 U	870 U 2200 U 870 U	a10 U 2000 U 810 U	ส10 บ 2000 ป 810 ป	1900 U 4800 U 1900 U
Acenaphthylene 2,6-Dinitrotoluene	330 330	U 088 U 088	870 U 870 U	870 U 870 U	8 10 ប 810 ប	810 U 810 U	1900 U 1900 U
3-Nitroandine Acenaphthene 2,4-Dintrophenol	830 330 830	2200 U 860 U 2200 UJ	2200 U 870 U 2200 UJ	2200 U 870 U 2200 UJ	2000 U 810 U 2000 UJ	2000 U 810 U 2000 U	4800 U 1900 U 4800 U
4-Nitropnenol Dibenzofuran	830 330	2200 U 860 U	2200 U 870 U	2200 U 870 U	2000 U 810 U	2000 U 810 U	4800 U 4800 U 1900 U
2,4-Dinitrotoluene Dietnylphthalate 4-Chlorophenyl-phenylether	330 330 330	860 U 860 U 860 U	870 U 870 U 870 U	670 U 870 U 870 U	810 U 810 U 810 U	810 U 810 U	1900 U 1900 U
Fiuorene 4-Nitroamline	330 830	860 U 2200 U	870 U 2200 U	870 U 2200 U	810 U 2000 U	810 U 810 U 2000 U	1900 U 1900 U 4800 U
4.6-Dinitro-2-methylphenol N-Nitrosodiphenylamine(1)	830 330	2200 U 860 U	2200 U 870 U	2200 U 870 U	2000 U 810 U	2000 U 810 U	4800 U 1900 U
4-Bramophenyl-ahenylether Hexachlorobenzene Pentachlorophenoi	330 330 830	860 년 860 년 2200 년	870 U 870 U 2200 U	870 U 870 U 2200 U	810 U 810 U 2000 U	810 U 810 U 2000 U	1900 U 1900 U 4800 U
Phenanthrene Anthracene	330 330	860 U 860 U	870 U 870 U	870 년 870 년	810 U 810 U	810 U 810 U	1900 U
Carpazole Di-n-butyiphthalate Fluoranthene	330 330 330	088 1 088 1 088	870 U 99 j 870 U	870 년 98 J 870 년	810 U 93 J 810 U	810 U 93 J 810 U	1900 U 1900 U 1900 U
Pyrene Butylbenzylphthalate	330 330	860 U 2000 EB	870 U 870 U	870 U 870 U	810 U 810 U	810 UJ 810 UJ	1900 UJ 1900 UJ
3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene	330 330 330	860 U 860 U 860 U	870 U 870 U 870 U	870 U 870 U 870 U	810 U 810 U 810 U	810 UJ 10 UJ 810 UJ	1900 UJ 1900 UJ
Bis(2-ethy/hexyl)phthalate Di-n-octylphthalate	330 330	860 UJ 350 JEB	150 JEB 870 VJ	230 JEB 870 UJ	210 JEB 810 JJ	210 JEB 810 UJ	1900 UJ 9900 JEB 1900 UJ
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	330 330 330	860 UJ 860 UJ 860 UJ	870 UJ 870 U 870 UJ	870 UJ 870 U 870 UJ	810 U 10 U 10 U	810 UJ 810 U 810 U	1900 UJ 1900 U
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	330 330 330	860 NT 860 NT 860 N	870 UJ 870 UJ	870 UJ 870 UJ 870 UJ	810 U 810 U 810 UJ	810 U 810 U 810 U	1900 U 1900 U 1900 U 1900 U
DILUTION FACTOR: DATE SAMPLED: DATE EXTRACTED: DATE ANALYZED: % MOISTURE:		2.0 12/05/98 12/10/98 12/22/98 24	2.0 12/06/98 12/10/98 12/22/98 25	2.0 12/06/98 12/10/98 12/22/98 24	2.0 12/06/98 12/10/98 12/22/98 19	2.0 12/06/98 12/10/98 12/28/98	5.0 12/08/98 12/10/98 12/28/98

NOTE: RESULTS ARE REPORTED ON A DRY WEIGHT BASIS.

TABLE 3 SEMIVOLATILE AQUEOUS ANALYSIS yg/L

SAMPLE NUMBER: SAMPLE LOCATION: LABORATORY NUMBER:		APP17 R8-03 981006-16
COMPOUND	CRQL	
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichloropenzene 1,4-Dichloropenzene 1,2-Dichlorobenzene 2-Methylphenol	10 10 10 10 10 10	10 U 10 U 10 U 10 U 10 U 10 U
2,2'-Oxybis(1-chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitroohenol 2,4-Dimethylphenol bis(2-Ohloroethoxy)methane	10 10 10 10 10 10 10	10 U 10 U 10 U 10 U 10 U 10 U 10 U
2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methyiphenol 2-Methylnachthalene Hexachlorocyctopentadiene	10 10 10 10 10 10 10 10	10 U 10 U 10 U 10 U 10 U 10 U 10 U
2,4,6-Enchloropnenoi 2,4,5-Enchloropnenoi 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dintrotoluene 3-Nitroaniline Acenaphthene	10 25 10 25 10 10 10 25	10 U 25 U 10 U 25 U 10 U 10 U 25 U
2,4-Dinitropnenci 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Dietrylphthalate Fluorene 4-Chlorophenyl-pnenylether 4-Nitroaniline	25 25 10 10 10 10 10 25	25 ÜJ 25 U 10 U 10 U 10 U 10 U 25 U
4.G-Dinitro-2-methylphenol N-Nitrosodiphenylamine(1) 4-Bromophenyl-phenylether Hexachioropenzene Pentachiorophenol Phenanthrene Anthracens Carbazole Din-butylphthalate	25 10 10 10 25 10 10 10	25 U 10 U 10 U 10 U 25 U 10 U 10 U 10 U
Fluoranthene Pyrene Burylbenzylphthalate 1,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene Bis(2-eitrylhexyl)phthalate Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene	10 10 10 10 10 10 10 10	10 U 10 U 11 10 U 10 U 5 J 10 U 10 U
8enzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perytene DILUTION FACTOR: DATE SAMPLED: DATE EXTRACTED:	10 10 10 10	10 U 10 U 10 U 10 U 1.0 12/06/98 12/11/98
DATE ANALYZED:		01/06/99

TABLE 6 PESTICIDE/POLYCHLORINATED BIPHENYL SOIL ANALYSIS μg/kg

LABORATORY: CEIMIC CORPORATION

CASE: 26713 SDG: APP02

SAMPLE NUMBER: SAMPLE LOCATION: LABORATORY NUMBER:		APP11 SO-03 981006-10	APP12 SO-04 981006-11	APP13 SO-05 981006-12	APP14 SO-06 981006-13	APP15 SO-07 981006-14	APP16 SO-08 981006-15
COMPOUND .	CRQL						
alpha-BHC	1.7	2.2 U	2.2 U	2.2 U	2.1 U	2.1 U	2.0 U
beta-BHC	1.7	2,2 U	2.2 U	2.2 U	2.1 U	2.1 U	2.0 U
delta-BHC	1.7	2.2 U	2,2 U	2.2 U	2.1 U	2.1 U	2.0 U
gamma-BHC (Lindane)	1.7	2.2 U	2.2 U	2.2 U	2.1 U	2.1 U	2.0 U
Heptachlor	1.7	2.2 U	2.2 U	2.2 U	2.1 U	2.1 U	2.0 U
Aldrin	1.7	2.2 U	2.2 U	2.2 U	2 1 ป	2.1 U	20 U
Heptachlor Epoxide	1.7	2.2 U	1.9 J	8.0	7.9	3.2	2.0 U
Endosulfan i	1.7	2.2 U	2.2 U	2.2 U	2.1 U	2.1 U	20 U
* Dieldrin	3.3	4.3 U	4.4 U	4.3 U	4.1 U	4.0 U	3.9 U
4,4'-DDE	3.3	6.0	3.0 J	4.9 J	4.8 J	4.4 J	3.9 U
Endrin	3.3	4.3 U	4.4 U	4.3 LJ	4.1 U	4.0 U	39 U
Endosulfan fI	3.3	4.3 U	4.4 U	4.3 U	4.1 U	4.0 U	3.9 U
4,4'-DDD	3.3	4.3 U	4.4 U	4.3 U	4.1 U	4.0 U	3.9 U
Endosulfan Sulfate	3,3	4.3 U	4.4 U	4.3 U	4.1 Ü	4.0 U	3.9 U
4,4'-DDT	3.3	8.8	4.4 U	4.3 U	4.1 U	4.8 J	3.9 บ
Methoxychlor	17	R	R	R	R	R	R
Endrin Kelone	3.3	4.3 U	4.4 U	4.3 U	4.1 U	4.0 U	3.9 U
Endrin Aldehyde	3.3	, 4.3 U	4.4 U	4.3 U	4.1 ป	4.0 U	3.9 U
alpha-Chlordane	1.7	2.2 U	2.2 U	2.2 €	2.1 U	2.1 U	2.0 U
gamma-Chlordane	1.7	2.2 U	1.8 J	4.4	4.3	2.8 J	2.0 U
Toxaphene	170	220 U	220 U	220 U	210 U	210 U	200 U
Araclor-1016	33	43 U	44 U	43 U	41 U	40 U	39 U
Araclar-1221	67	87 U	88 U	87 U	82 U	81 U	78 U
Aroclor-1232	33	43 U	44 U	43 U	41 U	40 U	39 U
Aroclor-1242	33	43 U	44 U	43 U	41 U	40 U	39 U
Aroclor-1248	33	43 U	44 U	43 U	41 U	40 U	39 U
Aroclor-1254	33	44	56	150	140	110	39 U
Areclor-1260	33	43 U	44 U	43 U	41 U	40 U	39 U
DILUTION FACTOR:		1.00	1.00	1.00	1.00	1.00	1.00
DATE SAMPLED:		12/06/98	12/06/98	12/06/98	12/06/98	12/06/98	12/06/98
DATE EXTRACTED:		12/10/98	12/10/98	12/10/98	12/10/98	12/10/98	12/10/98
DATE ANALYZED:		01/05/99	01/05/99	01/05/99	01/05/99	01/05/99	01/05/99
% MOISTURE:		24	25	24	19	19	15

* - RESULT REPORTED FROM DILUTED ANALYSIS

NOTE: RESULTS ARE REPORTED ON A DRY WEIGHT BASIS.

CASE: 26713 SDG: APP02

LABORATORY: CEIMIC CORPORATION

TABLE 5 PESTICIDE/POLYCHLORINATED BIPHENYL AQUEOUS ANALYSIS µg/L

SAMPLE NUMBER:	APP17
SAMPLE LOCATION:	RB-03
LABORATORY NUMBER:	981 006-16

COMPOUND	CRQL	
alpha-BHC	0,050	0.050 UJ
bela-BHC	0.050	0.050 UJ
delta-BHC	0.050	0.050 UJ
gamma-BHC (Lindane)	0.050	0.050 UJ
Heptachlor	0.050	0.050 UJ
Aldrin	0.050	0.050 UJ
Heptachlor Epoxide	0.050	0.050 UJ
Endosulfan I	0.050	0.050 UJ
Dieldrin	0.10	0.10 UJ
4.4'-DDE	0.10	0.10 UJ
Endrin	0.10	0.10 UJ
Endosulfan II	0.10	0,10 UJ
4,4'-DDD	0.10	0.10 UJ
Endosulfan Sulfate	0.10	0.10 UJ
4,4'-DDT	0.10	0.10 UJ
Methoxychlor	0.50	R
Endrin Kelone	0.10	0.10 UJ
Endrin Aldehyde	0.10	0.10 UJ
alpha-Chlordane	0.050	0.050 UJ
gamma-Chlordane	0.050	0.050 UJ
Toxaphene	5.0	5.0 UJ
Aroclor-1016	1.0	1.0 UJ
Aroclor-1221	2,0	2.0 UJ
Aracior-1232	1.0	1.0 UJ
Areclor-1242	1.0	1.0 UJ
Aroclor-1248	1.0	1.0 UJ
Aroclor-1254	1.0	1.0 U.J
Aroclor-1260	1.0	1.0 UJ

DILUTION FACTOR:	1.00
DATE SAMPLED:	12/06/98
DATE EXTRACTED:	12/09/98
DATE ANALYZED:	12/30/98
% MOISTURE:	

CASE: 26713 SDG: MALX66

LABORATORY: CHEMTECH CONSULTING GROUP

TABLE 2 **INORGANIC SOIL ANALYSES** mg/kg

SAMPLE NUMBER: SAMPLE LOCATION: LABORATORY NUMBER: PERCENT SOLIDS:		MALX66 SO-03 62098S 75.7	MALX67 SO-04 62099S 75.4	MAEX68 \$0-05 621028 74.5	MALX69 SO-06 62103S 76.5	MALX70 SO-07 62104S 75.5	MALX71 SO-08 62105S 65.0	MALX72 SO-09 62106S 84.2		
INORGANIC ELEMENT	s	INSTRUMENT DETECTION LIMITS (mg/kg)					,			CONTRACT DETECTION LIMITS (mg/kg)
ALUMINUM	þ	2.5	10300	15100	13400	12700	12700	9610	10600	40
ANTIMONY	P.	0.70	1.3 U	1.3 ป	1.3 U	1.3 U	1.3 U	1.2 U	1.2 U	12
ARSENIC	P	0.72	2.4	3.6	3.5	2.8	4.4	2.B	4.1	2
BARIUM	P	0.84	55.2	68.9	50.0	52.0	51.8	28.4	34.5	40
BERYLLIUM	P	0.02	0.55	0.61	0.53	0.52	0.54	0.47	0.49	1
CADMIUM	P	0.06	0.25 U	0.27 U	0.26 U	0 26 U	0.26 U	0.24 U	0.24 U	1
CALCIUM	Р	21.2	8080	2240	1110	1150	1330	1620	1610	1000
CHROMIUM	P	0.22	15.7	22.2	19.7	18.9	19.6	15.3	16.6	2
COBALT	P	0.34	7.4	10.3	6.0	8.1	9.2	7.8	85	10
COPPER	P	0.46	27.6	26.2	35.7	32.9	30.1	17.5	15.4	5

IRON	P	5.1	15900	21900	16500	16900	19000	14900	16500	20
LEAD	P	0.36 .	20.3	19.8	29.3	25.9	23.6	5.9	10.4	0.6
MAGNESIUM	P	25.4	3360	4960	3610	3690	3770	3900	4010	1000
MANGANESE	P	0.06	428	381	239	281	387	342	424	3
MERCURY	CV	0.05	0.13 U	0.13 U	0.13 U	0.12 U	0.13 U	0.12 U	0.19	0.1
NICKEL	P	0.42	16.3	24.3	18.5	18.2	21.2	18.9	19.7	8
POTASSIUM	P	44.0	629	1160	B40	623 J	799	937	936	1000
SELENIUM	P	0.94	1.3 U	1.2 U	1.2 U	1				
SILVER	P	0.42	0.51 U	0.53 U	0.52 U	0.51 U	0.52 U	0.47 U	0.48 U	2
SODIUM	P	121	175	164	142	136	. 133	126	147	1000
THALLIUM	P	1.3	1.B	0.53 U	0.62 U	0.51 U	0.52 U	0.47 JJ	0.48 U	2
VANADIUM	P	0.32	19.8	30.9	28.5	27.2	26.7	19.1	19.9	10
ZING	Р	0.62	141	133	106	114	138	41.0	53.8	4
CYANIDE	CA	0.50	0.26 U	0.27 U	0 93	0.60	0.26 U	0.23 U	0.23 U	2.5

ANALYTICAL METHOD

F - FURNACE

P - ICP/FLAME AA

CV - COLD VAPOR

AS - SEMI AUTOMATED

SPECTROPHOTOMETRIC

CA - MIDI-DISTILLATION

SPECTROPHOTOMETRIC

NOTE:

J = QUANTITATION IS ESTIMATED DUE TO LIMITATIONS IDENTIFIED

IN THE QUALITY CONTROL REVIEW (DATA REVIEW).

U = VALUE IS NON-DETECTED.

UJ = VALUE IS NON-DETECTED AND DETECTION LIMIT IS ESTIMATED.

R = VALUE IS REJECTED.

NA # NOT ANALYZED

NOTE:

RESULTS ARE REPORTED ON A DRY WEIGHT BASIS.

CASE: 28713 SDG: MALX66

LABORATORY: CHEMTECH CONSULTING GROUP

TABLE 1 INORGANIC WATER ANALYSIS ug/L

SAMPLE NUMBER: SAMPLE LOCATION: LABORATORY NUMBER: MALX73 RB-03 62107S

	,	INSTRUMENT DETECTION LIMITS		
INORGANIC ELEMENTS	METHOD	(ug/L)		
ALUMINUM	P	7.0	7.0 U	
ANTIMONY	P	5.0	5.D U	
ARSENIC	P	4.0	4.0 U	
BARIUM	P	1.0	1.0 U	·
BERYLLIUM	Þ	1.0	1.3 UJ	
CADMIUM	P	1.0	1.0 U	
CALCIUM	P	11.0	11.0 U	
CHROMIUM	P	2.0	2.0 U	•
COBALT	P	2.0	2.0 U	
COPPER	P	1.0	1.0 U	
IRON	P	27.0	27.0 U	
LEAD	Р	2.0	2.0	
MAGNESIUM	P	13.0	13.0 U	
MANGANESE	P	1.0	1.0 U	
MERCURY	CV	0.20	0.20 U	
NICKEL	Р	1.0	1.0 U	·
POTASSIUM	Р	60.0	60.0 U	
SELENIUM	Р	5.0	5.0 U	
SILVER	P	2.0	2.0 U	
SODIUM	Р	5 5 .0	55.0 U	
THALLIUM	P	2.0	2.0 U	
VANADIUM	P	2.0	2.3 UJ	
ZINC	P	2.0	2.0 U	•
CYANIDE	CA	4.0	4.0 U	

ANALYTICAL METHOD

- F FURNACE
- P ICP/FLAME AA
- CV COLD VAPOR
- AS SEMIAUTOMATED
- SPECTROPHOTOMETRIC
- CA MIDI-DISTILLATION
- SPECTROPHOTOMETRIC

NOTE:

- J QUANTITATION IS ESTIMATED DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW).
- U VALUE IS NON-DETECTED AND DETECTION LIMIT IS RAISED.
- UJ VALUE IS NON-DETECTED AND DETECTION LIMIT IS ESTIMATED.

100

R - VALUE IS REJECTED.

Page Lof 3

DAS NO: 0215F SDG NO.: DAF12H

SHE PUTNEY PAPER COMPANY

SAMPLE NUMBER: STATION LOCATION: MATRIX: 	SO-05 SOIL		DAF13H# SO-06 SOIL		DAF14H# SO-08 SOIL	
TCDD/TCDF CONC		DP\EWBC.	====================================	DL/EMPC*	pg/g	= ====================================
2,3,7,8-TCDD	5.14 J	<u> </u>	 4.50	! !		1
1,2,3,7,8-PeCDD	5.710	0.612	4.50 	1 0.700 1	O)	0.266
1,2.3,4,7,8-HxCDD	UJ	1.24	i Uj	0.706 *]	UJ	0.135
1,2,3,6,7,8-HxCDD	22.8 J	1.64		1.65	ΓΩ	0 238
1,2,3,7 8,9-HxCDD	8.87 J		24.9 7.97	! !	นม	0.971
1.2,3,4,6,7,8-HpCDD	404 J		348 J	!!!	UJ	0.554
ocpo	3740 EJ	! !	3430 EJ] 1 !	12.7 J 131 J	1
ļ		!	2.00 23	i i	131 3	1
2,3,7 8-TCDF	62.1 JEB	i i	41.5 JEB	! ! ! !		 1.21 *
1,2,3,7,8-PeCDF	1.23 JEB	j i	11.0 025	1.20		•
2,3.4,7,8-PeCDF		2.38	2.61 EB	, ,, <u>,,,</u>	0.528 EB	0.310 *
1,2,3,4,7,8-HxCDF	J 80.9	: , I	8.41	;	0.320 EB	i 1.13
1,2,3,6.7,8-HxCDF	2.90 J		ປິ່ນ	1.38	n1	1.13
,2,3,7,8,9-HxCDF		0.598 *	นา	0.182	UJ ,	0.556
2,3,4,6,7,8-HxCDF	กา	1.49 j	เก	0.722	กา กา	0.163
,2,3,4,6,7,8-HpCDF	57.4 JEB	į	49.2 JEB		2.74 JEB	0.407
,2,3,4,7 8,9-HpCDF	6.47 J	i	5,42	1	UJ	0.536
CDF	191 J	į	172 J	i	OJ 1	B.06
	1	1	i	i	i	2.00
OTAL TOOD	6.14 JEB	1	7.26 JEB	i	0.0070 JEB	
OTAL PeCDD	3.15 J	I	3.17 J	í	UJ	0.017
OTAL HXCDD	137 J	1	121 J	1	UJ	1.21
OTAL HODE	744 JEB	1	600 JEB	1	20.7 JEB	
OTAL TODE	85.3 JEB	I	78.2 JEB	į	1.21 JEB	
OTAL PeCDF OTAL HxCDF	11.8 JEB	l	18.6 JEB (1	1.82 JEB	
OTAL HICOF	66.8 J		45.0 J	1	UJ	3.11
·	242 J ===================================	·	210 🕽 🚦	ļ.	8.17 J	
TOXICITY EQUIVALENCY:	26 942 J		22.124 J	======= [:		
% SOLIDS:	74	į	78	ļ	0.686 J	
DILUTION FACTOR:	1.0	i i	1.0	1	84	
DATE SAMPLED:	12/06/98	1	12/06/98	1	1.0	
DATE OF RECEIPT:	12/08/9B		12/08/98	ŗ	12/06/98 12/08/98	
SAMPLE EXTRACTION DATE:	12/11/98	1	12/09/98	1	12/08/98	
ANALYSIS DATE	12/14/98	1	01/04/99	:	01/04/99	
LAB SAMPLE ID:	115589	i	115590	ŗ	115591	

^{* =} These values are EMPCs (Estimated Maximum Possible Concentration): EMPC values are not qualified with a "J", Values without an "*" are the Detection Limits.

^{# =} These values are reported on a dry weight basis.

E = Exceeded instrument calibration range.

EB = Equipment Blank contamination.

ATTACHMENT B

BLOOD FARM DUMP

DRINKING WATER SAMPLE ANALYTICAL RESULTS START

Samples Collected 6 December 1998

SA98010001\bloodfbloodfni wpd 20 February 2001

CASE: 0213F SDG: DAFISG LABORATORY: EAS LABORATORIES

TABLE 1 VOA Modified Method 524.2 Water Analyses pg/L

DAF85G QAF86G CAF67G DAF88G DAF89G SAMPLE NUMBER: DAF90G SAMPLE LOCATION: DW-01 DW-02 DW-03 DW-04 DIMEGS DMADE LABORATORY NUMBER: 9612451 9612452 9812453 9812454 9812455 9812458 CROL COMPOUND 1.0 U Dichlorodifluoromethane 1.0 1.0 U 1.0 U 1.0 U t.0 U 1.0 U Chloromethane 1.0 1.0 UJ 1.0 0.1 1.0 UJ 1.0 UJ 1.0 UJ t.0 UJ Vinyi Chloride 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U Bromomethane 1.0 1.0 U 1.0 U to H 1.0 U t.a. U 1.0 U 1.0 Chlomethane 1.0 UJ 1.0 U 1.0 U 1,0 U 1.0 U 1.0 U Trichlorofluoromethane 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 5.0 Ü 50 Ü Acetona 5.0 5.0 U 5.0 U 5.0 U 5.0 U 1.0 1.1-Dichloroethene 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U Methylene Chloride 1.0 1.0 UJ 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U Carbon Disuifida 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U trans-1,2-Dichtoroothene 1.0 1.0 U 1.1-Dichloroethane 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 50 5.0 U 5.0 U 2-Buttinone 5.0 U 5.0 U 5.0 U 50 U cis-1,2-Dichlorcethene 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 2,2-Dichloropropane 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U Chloroform 1.0 U 1.0 U 1.0 1.0 U 1.0 U 1.0 U 1.0 U Bromochionomethane 1.0 1.0 U 1,0 U 1,0 U 1.0 U 1.0 U 1.0 U Tetrahydrofyran 5.0 5.0 U 5.0 U 5.0 U 5.0 U 5.0 3 5.0 U 1.0 U 1.0 U 1.0 U 1.1.1-Trichlorcethane 1.0 1.0 U 1.0 U 1.0 U 1.1-Dichloropropene 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.2-Cicnloroethana 1.0 1.0 U 1,0 U 1.0 U 1.0 U 1.0 U 1.0 U t.0 U Carcon Tetrachionide 1.0 1.0 1/ 1.0 U 1.0 U 1.0 U 1.0 U Benzene 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U Trichlorcethene 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1,2-Cichloropropane 1,0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 1.0 U 1.0 U 1.0 U Dibromomethane 1.0 U 1.0 U 1.0 U Bromodichloremethane 1.0 1.0 U 1.0 U 1.0 U 1.0 U 10.11 t.a tr 4-Methyl-2-Pentanone 5.0 UJ 5.0 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U cs-1,3-Dichloropropene 1,0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U Taluene 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U trans-1.3-Dicatoropropene 1.0 U 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.1.2-Trichloroethane 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 2-Hexanone 5.0 5.0 UJ 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 1.3-Dichlorepropane 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U Dibromochloromethane 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U Tetrachioroethene 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.2-Dibromoethane 1.0 U 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U Chlorobenzene 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.1.1.2-Tetrachiorcethane 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U Ethylbenzene 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1,0 U m/p-Xylene 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U Styrene 1.0 1.0 U 1.0 U 1.0 U 1,0 U 1.0 U 10.0 o-Xylene 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U Bromoform 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 Ų 1.1.2.2-Tetrachloroethane 1,0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U Isopropyibenzene 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.2.3-Trichloropropane 1.0 1.0 U 1.0 U 1.0 U t.0 U 1.0 U 1.0 U Bromobenzene 1.0 1,0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U n-Propylbenzene 1.0 U 1.0 U 1.0 U 1.0 1.0 U 1.0 U 1.0 U 2-Chiorotoluana 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 4-Chlorotoluene 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 LI 1.0 U 1.0 U 1,3,5-Trimethylbenzene 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U tert-Butyiberzene 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1,2,4-Trimethylbenzene 1.0 1.0 U 1,0 U sec-Buty/benzene 1.0 1.0 U 1.0 U 1.0 U 1,3-Dichlorobenzene 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.4-Oichiorobenzene 1.0 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 Ū 1.0 U p-isopropyitoluene 1.0 U 1.0 1.0 U 1 D U 1.0 U 1,2-Oichlorobenzene 1.0 1.0 U n-Sutyibenzene 1,0 1.0 U 1.0 U 1.0 U 1.0 U 1-2-Dibromo-3-Chloropropana 1.0 U 1.0 U 1.0 U 1.0 1.0 U 1,0 U 1.0 U 1,2,4-Trichlorobenzene 1.0 1.0 UJ 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U Naphthalene 1.0 1.0 UJ 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U Hexachlorobutadiene 1.0 U 1.0 1.0 U 1.0 Lt 1.0 U 10.0 10.0 1.2.3-Trichloropenzene 1.0 1.0 U.1 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U DILUTION FACTOR: 1.0 1.0 1.0 1.0 1.0 1.0 DATE SAMPLED: 12/06/98 12/06/98 12/06/98 12/06/98 12/06/98 12/08/98 DATE ANALYZED: 12/14/98 12/14/98 12/14/98 12/14/98 12/14/98 12/14/98

SITE: PUTNEY PAPER COMPANY SLUDGE DISPOSAL SITE CASE: 0213F SDG: DAFISG

LABORATORY: EAS LABORATORIES

TABLE 1 VCA Modified Method 524.2 Water Analyses PQ/L

· * -

ENDORATORIT. ENGLABORATORIES				3r.	
Sample number: Sample location: Laboratory number:		DAF06H DW-07 9812457	DAF09H DW-68 9812458	DAF 10H TB-02 9812460	DAF15H DW-09 9812459
COMPOUND	CRQL				
Dichlorocifluoromethane	1.0	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	1.0	1.0 UJ	1,0 UJ	1.0 UJ	1.0 UJ
Vinyi Chionde	1.0	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	1,0	1.0 U	1.0 U	t,0 U	1.0 U
Chloroethane	1.0	1.0 U	1.0 U	1.0 U	1.0 U
Trichiorofluoromethane	1.0	1.0 U	1.9 U	1.0 U	1.0 U
Acatone	5.0	5.0 U.I	5.0 U.J	5.0 UJ	5.0 UJ
1,1-Olchloroethene	1.0	t.a U	1.0 U	1.0 U	1.0 U
Methylene Chlonde	1.0	1.0 U	1.0 U	1.0 U	1,0 U
Carbon Disuifide	1.0 1.0	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U
1,1-Dichioroethane	1.0	1.0 U	1.0 U	1.0 U 1.0 U	1,0 U 1,0 U
2-Butanone	5.0	5.0 U	5.0 U	5.0 U	1.0 U
cis-1,2-Dichloroethene	1.0	1,0 U	1.0 U	1.0 U	1.0 U
2.2-Dichloropropane	1.0	1.0 U	1.0 U	1.0 U	1.0 U
Chlorcform	1:0	1.0 U	1.0 U	1.0 U	1.0 U
Bromochioromethane	1.Q	1,6 U	1.0 U	1.0 U	1.0 U
Tetrahydrofuran	5.0	5.0 U	5.0 U	5.0 U	5.0 U
1,1,1-Tinchloroethane	1.0	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloropropene	1.0	1.0 U	1.0 U	1.0 U	1,0 ↓
1,2-Dichlorosthane	1.0	1.0 U	1.0 U	1.0 U	1.0 U
Carbon Tetrachlonde Benzene	1.0 1.0	1.0 U	1.0 U	1.a U	1.0 U
Trictloroethene	1.0	1.0 U 1.0 U	1.0 U	1.0 U	1.0 U
1,2-Oichloropropane	1,0	1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1,0 U 1,0 U
Dibranomethane	1.0	1.0 U	1.0 U	1.0 U	1.0 U
9romodichloromethane	1.0	1.0 U	1.0 U	1.0 U	1.0 U
4-Methyl-2-Pentanone	5.0	5.0 U	5.0 U	5.0 U	5.0 Ú
cis-1,3-Dichtoropropene	1.0	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	1.0	1,0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichtoropropene	1.0	1.0 U	1.0 U	1.0 U	1,0 U
1.1,2-Trichiorpethana	1.0	1.0 U	1.0 U	1.0 U	1,0 U
2-Hexanone	5.0	5.0 U	s.a u	5.0 U	5.0 U
1,3-Dichloropropane Dibromochloromethana	1.0	1.0 U	1.0 U	t.a U	1.9 U
Tetrachioroethene	1.0 1.0	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U
1,2-Oibromoethane	1.0	1.0 U	1.0 U	1,0 U 1,0 U	1.0 U 1.0 U
Chlorobenzena	1.0	1.0 U	1.0 U	1.0 U	1.0 U
1,1,1,2-Tetracnioroethane	1.0	1.0 U	1.0 U	1.0 Ŭ	1.0 U
E:hylbenzene	1.0	1.0 U	1.0 U	1.0 Ū	1.0 U
m/p-Xylene	1.0	1.0 U	1.0 U	1.0 U	1.0 U
Styrene	1.0	1.0 U	1.0 U	1.0 U	1.0 U
o-Xylene	1,0	1.0 U	1.0 U	1.a U	1.0 U
Bromoform	1.0	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane (sopropylbenzene	1,0 1.0	t.o U 1.0 U	. 1.0 U	1.0 U	1.0 U
1.2.3-Trichloroprogane	1.0	1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
Bromobenzene	1.0	1.0 U	1.0 U	1.0 U	1,0 U
n-Propylbenzene	1.0	1.0 U	1.0 U	1.0 U	1.0 U
2-Chlorotoluene	1.0	1.0 U	1.0 U	1.0 U	1.0 U
4-Chlorotaluene	1.0	1.0 U	1.0 U	1.0 U	1.0 U
1,3,5-Trimethyibenzene	1.0	1.0 U	1.0 U	1.0 U	1.0 U
tert-Butylbenzene	1.0	1.0 U	1.0 U	1.0 U	1.0 Ü
1,2,4-Trimethylbenzene	1.0	1.0 U	1.0 U	1.0 U	1.0 U
sec-Butylbenzene	1.0	t.a u	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzana 1,4-Dichlorobenzana	1.0 1.0	1.0 U	1.0 U	1.0 U	1.0 U
p-isopropyitaluene	1.0	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
1,2-Dichlorobenzene	1.0	1.0 U	1.0 U	1.0 U	1.0 U
n-Butylbenzene	1.0	1.0 U	1.0 U	1.0 U	1.0 U
1-2-Dibromo-3-Chloropropane	1.0	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	1.0	1.0 U	1.0 U	1.0 U	1.0 U
Naphthalene	1.0	1.0 U	1,0 U	1.0 U	1.0 U
Hexachioroputadiene	1.0	1.0 U	1.0 U	1.0 U	1.0 U
1,2,3-Trichlorobenzene	1.0	1.0 U	1.0 U	1.0 U	1.0 U
DILUTION FACTOR:		1.0	1.0	1.5	10
DATE SAMPLED:		12/06/98	12/06/98	1.0 12/06/98	1.0 12/06/98
DATE ANALYZED:		12/15/98	12/15/98	12/14/98	12/15/98

TABLE 3 SEMIVOLATILE AQUEOUS ANALYSIS µg/L

SAMPLE NUMBER: SAMPLE LOCATION- LABORATORY NUMBER:		APP02 DW-01 981006-01	APP03 DW-02 981006-02	APP04 DW-03 981006-03
COMPOUND	CRQL			
Phenol bis(2-Chioroethyt)ether 2-Chiorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2-Methylphenol 2,2-Oxybis(1-chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethytphenol bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 U	10 U	10 U
Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 3-Nitroaniline 3-Nitroaniline Acenaphthene 2,4-Dinitrotoluene 3-Nitrophenol 4-Nitrophenol 0-Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate	10 10 10 10 25 10 25 10 10 25 10 25 10 10 25	10 U 10 U 10 U 10 U 10 U 25 U 10 U 10 U 25 U 10 U 25 U 10	10 U 10 U 10 U 10 U 25 U 10 U 25 U 10 U 25 U 10 U 25 U 10 U 25 U 10 U	10 U 10 U 10 U 10 U 25 U 10 U 25 U 10 U 26 U 10 U 25 U 10 U 25 U 10 U
4-Chlorophenyl-phenylether 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine(1) 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Carbazole Di-n-butylphthalate Ffuoranthene Pyrene Butylbenzylphthalate 3,3-Dichlorobenzidine Benzo(a)anthracene Chrysene Bis(2-ethylhexyl)phthalate Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	10 10 25 25 10 10 10 10 10 10 10 10 10 10 10 10 10	10 U 25 U 25 U 25 U 10 U 1	10 U 10 U 25 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10	10 U U U U U U U U U U U U U U U U U U U
DILUTION FACTOR: DATE SAMPLED: DATE EXTRACTED: DATE ANALYZED:		1.0 12/06/98 12/11/98 01/06/99	1.0 12/06/98 12/11/98 01/06/99	1.0 12/06/98 12/11/98 01/06/99

SITE: PUTNEY PAPER COMPANY SLUDGE DISPOSAL CASE: 26713 SDG: APP02 LABORATORY: CEIMIC CORPORATION

TABLE 3 SEMIVOLATILE AQUEOUS ANALYSIS µg/L

SAMPLE NUMBER: SAMPLE LOCATION: LABORATORY NUMBER:		APP05 DW-04 981006-04	APP06 DW-05 981006-05	APP07 DW-06 981006-06	APP08 DW-07 981006-07	APPC9 DW-08 981006-08	APP10 DW-09 981006-09
COMPOUND	CRCL						. =
Phenol	10	10 U					
bis(2-Chigraetnyl)ether	10	10 U					
2-Chlorophenoi	10	·10 U	10 U	10 U	10 U	10 U	10 U
1,3-Dichloropenzene	10	10 U	to u				
1,4-Dichloropenzene	10	10 U					
1,2-Dichlorobenzene	10	10 U	10 U 10 U	10 U 10 U	10 U	10 U	10 U
2-Methylphenol	10 10	10 U 10 U	10 U	10 U	10 U 10 U	10 U 10 U	10 U
2,2'-Oxypis(1-chlcropropane) 4-Methylphenol	10	10 U					
N-Nitroso-di-n-propylamine	10	10 U					
Hexachloroethane	10	10 U	10 U	10 U	10 1	10 U	10 U
Nitrobenzene	10	10 U					
Isophorone	10	10 U	10 Ú				
2-Nitrophenol	10	10 U	10 U	10 U	10 ป	10 U	10 U
2,4-Dimetrylchenot	10	10 U	10 U	10 U	10 ប្	10 U	10 U
bis(2-Chloroethcxy)methane	10	10 U	10 U	10 U	to U	10 U	10 U
2,4-Dichleropnenol	10	to U	10 U				
t,2,4-Trichlorcpenzene	10	10 U					
Naphthaiene	10	10 U	10 U	10 U	10 U	to U	10 U
4-Chloroaniline	10	10 U					
Hexachlorobutadiene	10	10 U	10 U 10 U	10 U 10 U	10 U	10 U	10 U
4-Chloro-3-methy:phenot 2-Methyinaphthaiene	10 10	10 U 10 U	10 U	10 U	10 U 10 U	10 U	10 U
Z-iviegnymaphtitatiene Hexachiorocyclopentagiene	ta	· 10 U	10 U	10 U	10 1	10 U 10 U	10 U 10 U
2.4.6-Trichlorophenol	10	10 U					
2,4,5-Trichlorophenoi	25	25 U					
2-Chloronaenthaiene	10	10 U	10 U	10 U	10 ij	10 U	10 U
2-Nitroanibne	25	25 U					
Dimethylpnthalate	10	10 U	10 U	t0 U	10 U	10 U	10 U
Acenaphthylene	10	10 U	10 U	10 U	16 U	10 U	10 U
2,6-Dimitrotoluene	10	10 U					
3-Nitroandine	25	25 U	25 U	25 U	25 ∪	25 U	25 U
Acenachthene	10	10 U	10 년	10 U	10 U	10 U	10 U
2,4-Dinitropnenol	25	25 UJ	25 UJ	25 UJ	25 U.i	25 UJ	25 UJ
4-Nitrophenol	25 10	25 U 10 U					
Dibenzofuran 2,4-Dinitrotoluene	10	to U	10 U				
Diethylphthalate	10	10 U					
Fluorene	10	10 U					
4-Chlorophenyl-phenylether	10	1 0 U	10 U	10 U	10 U	10 U	10 Ü
4-Nitroaniline	25	25 U					
4,8-Dinitro-2-methylphenol	25	25 U	25 U	25 U	25 ปู	25 U	25 U
N-Nitrosodipnenylamine(1)	10	10 U	10 U	10 U	10 U	to u	10 U
4-Bromophenyl-phenylether	10	10 U					
Hexachloropenzene	10	10 U	10 U	10 U	10 U	10 ()	10 U
Pentachlorophenol	25	25 U	25 U 10 U	25 U 10 U	25 U	25 U	25 U
Phenanthrene Anthrene	10 10	10 U 10 U	10 U	10 U	10 U 10 U	10 V 10 U	10 U 10 U
Anthracene Carbazole	10	10 U					
Di-n-buty/phthalate	10	10 U	10 Ú	to U	10 U	10 U	10 U
Fluoranthene	10	10 U					
Pyrene	10	10 U	15 U				
Butylbenzylphthalate	10	10 U					
3,3'-Dichlorobenzidine	10	10 U	10 ป				
Benzo(a)anthracene	10	10 U	10 U	10 U	10 ∪	10 U	10 U
Chrysene	10	10 U	10 U	10 U	10 ປ	10 U	† 0 ∪
Bis(Z-ethylhexyl)phthalate	10	10 U					
Di-n-octylpnthalate	1G 10	10 UJ	t0 UJ	10 UJ	10 UJ	10 UJ	10 UJ
Benzo(b)fluoranthene Benzo(k)fluoranthene	10 10	10 U 10 UJ	10 U 10 U				
Benzo(k))todrantnene Benzo(a)pyrene	10	10 UJ	10 U	10 U	10 U	10 UJ	10 U
Indeno(1,2,3-cd)pyrene	10	10 U	16 U	10 U	10 U	10 U	10 U
Dibenz(a,h)anthracene	10	10 U					
Benzo(g,h,i)perylene	10	10 U					
			4.5				
DILUTION FACTOR: DATE SAMPLED:		1.0 12/06/98	1.0 12/06/98	1.0 12/06/98	1.0 12/06/98	1.0 12/08/88	1.0
DATE SAMPLED: DATE EXTRACTED:		12/11/98	12/11/98	12/06/96 12/11/98	12/11/98	12/06/98 12/11/98	12/06/98 12/11/98
DATE ANALYZED:		01/06/99	01/06/99	01/06/99	01/06/99	01/06/99	01/06/99
				-			

CASE: 26713 SDG: APP02

LABORATORY: CEIMIC CORPORATION

TABLE 5 PESTICIDE/POLYCHLORINATED BIPHENYL AQUEOUS ANALYSIS µg/L

SAMPLE NUMBER: SAMPLE LOCATION: LABORATORY NUMBER;	APP02 DW-01 981006-01	APP03 DW-02 981006-02	APP04 DW-03 981006-03	
COMPOUND	CRQL			
aipha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan Dieldrin 4,4'-DDE Endrin Endosulfan iII 4,4'-DDD Endosulfan Sulfate 4,4'-DDT Methoxychlor Endrin Ketone Endrin Aldehyde alpha-Chlordane gamma-Chiordane Toxaphene Aroclor-1212 Aroclor-1242 Aroclor-1254 Aroclor-1260	0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.10 0.1	0.050 U 0.10 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.10 U	0.050 U 0.10 U 1.0 U 0.050 U 1.0 U 1.0 U 1.0 U 1.0 U
DILUTION FACTOR: DATE SAMPLED: DATE EXTRACTED: DATE ANALYZED: % MOISTURE:	1.0	1.0 U 1.00 12/06/98 12/09/98 12/30/98	1.0 U 1.00 12/06/96 12/09/98 12/30/98	1.0 U 1.00 12/06/98 12/09/98 12/30/98

CASE; 26713 SDG: APP02

LABORATORY: CEIMIC CORPORATION

TABLE 5 PESTICIDE/POLYCHLORINATED BIPHENYL AQUEOUS ANALYSIS µg/L.

SAMPLE NUMBER: SAMPLE LOCATION: LABORATORY NUMBER:		APP05 DW-04 981006-04	APP06 DW-05 981006-05	APP07 DW-06 981006-06	APP08 DW-07 981006-07	APP09 DW-08 981006-08	APP10 DW-09 981006-09
COMPOUND	CRQL						
alpha-BHC	0.050	0.050 U	0.050 UJ				
beta-BHC	0.050	0.050 U	0,050 UJ				
delta-BHC	0.050	0.050 U	0.050 UJ				
gamma-BHC (Lindane)	0.050	0.050 U	0.050 UJ				
Heptachlor	0.050	0.050 U	0.050 UJ				
Aldrin	0.050	0.050 U	0.050 UJ				
Heptachlor Epoxide	0.050	0.050 U	0.050 UJ				
Endosulfan I	0.050	0.050 U	0.050 UJ				
Dieldrin	0.10	0.10 U	0.10 UJ				
4,4'-DDE	0.10	0.10 U	0.10 UJ				
Endrin	0.10	0.10 U	0.10 UJ				
Endosulfan II	0.10	0.10 U	0.10 UJ				
4,4'-DDD	0.10	0.10 U	0.10 UJ				
Endosulfan Sulfate	0.10	0.10 U	0.10 UJ				
4,4'-DDT	0.10	0.10 U	0.10 UJ				
Methoxychlor	0.50	R	R	R	R	R	R
Endrin Ketone	0.10	0, 10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 UJ
Endrin Aldehyde	0.10	0.10 U	0.10 U	0. 1 0 U	0 10 U	0.10 U	0 .10 UJ
alpha-Chlordane	0.050	0.050 U	0.050 U	0 050 U	0.050 U	0.050 U	0.050 UJ
gamma-Chlordan o	0.050	0.050 U	0.050 UJ				
Toxaphene	5.0	5.0 U	5.0 U	5.0 U	50 U	5.0 U	5.0 UJ
Araclor-1016	1.0	1.0 U	1.0 UJ				
Aroclor-1221	2.0	2.0 U	2.0 UJ				
Aroclor-1232	1.0	1,0 U	1.0 UJ				
Arocior-1242	1.0	1,0 U	1.0 UJ				
Aroclor-1248	1.0	1.0 U	1.0 UJ				
Aroclor-1254	1.0	1.0 U	1.0 U	1.0 U	1.D U	1.0 U	1.0 UJ
Aroclor-1260	1.0	1.0 U	1.0 U	1.0 U	1,0 U	1.0 U	1.0 UJ
DILUTION FACTOR:		1.00	1.00	1.00	1.00	1.00	1.00
DATE SAMPLED:		12/06/98	12/06/98	12/06/98	12/06/98	12/06/98	12/06/98
DATE EXTRACTED:		12/09/98	12/09/98	12/09/98	12/09/98	12/09/98	12/09/98
DATE ANALYZED: % MOISTURE:		12/30/98	12/30/98	12/30/98	12/30/98	12/30/98	12/30/98

CASE: 26713 SDG: MALX57

LABORATORY: CHEMTECH CONSULTING GROUP

TABLE 1 INORGANIC WATER ANALYSIS ug/L

MALX60

DW-04

621138

SAMPLE NUMBER: SAMPLE LOCATION: LABORATORY NUMBER:

MALX57 MALX58 MALX59 DW-01 DW-02 DW-03 62110S 62111S 62112S

INORGANIC ELEMENTS	METHOD	INSTRUMENT DETECTION LIMITS (ug/L)	<u></u>				CONTRACT DETECTION LIMITS (ug/L)
ALUMINUM	Р	7.0	37.7 UJ	29.0 UJ	290	25.8 UJ	
ANTIMONY	₽	5.0	5.0 U	5.0 U	5.0 U	5.0 U	200
ARSENIC	Р	4.0	4.0 U	4.0 U	15.7	4.0 U	60
BARIUM	Р	1.0	42.2	45.7	11.4	74.0	10
BERYLLIUM	₽	1.0	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	200
CADMIUM	P	1.0	1.0 U	1.0 U	1.0 U	1.0 U	5
CALCIUM	Р	11	11300	12100	7730	19000	5
CHROMIUM	Р	2.0	2.0 U	2.0 U	30.3	2.0 U	5000
COBALT	Р	2.0	2.0 U	2.0 U	2.0 U		10
COPPER	Р	1.0	28.9	15.7	548	2.0 U	50
IRON	P	27	2460	2660	37800	14.3 1710	25
LEAD	Р	2.0	2.0 U	2.0 U	180		100
MAGNESIUM	Р	13	3120	3370	1130	2.0 U	3
MANGANESE	Р	1.0	398	434	39.1	3630	5000
MERCURY	CV	0.20	0.20 UJ	0.20 UJ	0.20 UJ	157	15
NICKEL	Р	1.0	1.1 U	1.1 U		0.20 UJ	0.2
POTASSIUM	P	60	845	917	1.0 U	1.0 U	40
SELENIUM	P	5.0	5.0 U	5.0 U	931 5.0 U	1140	5000
SILVER	P	2.0	2.0 U	2.0 U		5.0 U	5
SODIUM	P	55	2360	2500	2.0 U	2.0 U	10
THALLIUM	P	2.0	2.0 UJ	5.3 UJ	25100	17300	5000
VANADIUM	, P	2.0	2.0 U	2.0 U	3.4 UJ	5.5 UJ	10
ZINC	, P	2.0	55.5		7.8	2.0 U	50
CYANIDE	ĆA	4.0	4.0 U	51.1	61.0	51.1	20
				4.0 U	<u>4.0 U</u>	4 <u>.0 U</u>	

ANALYTICAL METHOD

F - FURNACE

P - ICP/FLAME AA

CV - COLD VAPOR

AS - SEMI AUTOMATED

SPECTROPHOTOMETRIC

CA - MIDI-DISTILLATION

SPECTROPHOTOMETRIC

NOTE:

J - QUANTITATION IS ESTIMATED DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW).

U - VALUE IS NON-DETECTED AND DETECTION LIMIT IS RAISED.

UJ VALUE IS NON-DETECTED AND DETECTION LIMIT IS ESTIMATED.

R - VALUE IS REJECTED.

CASE: 26713 SDG: MALX57

LABORATORY: CHEMTECH CONSULTING GROUP

TABLE 1 INORGANIC WATER ANALYSIS ug/L

SAMPLE NUMBER: SAMPLE LOCATION: LABORATORY NUMBER:

MALX61 DW-05 621148 MALX62 DW-06 621158

MALX63 DW-07 62116S MALX64 DW-08 62117\$ MALX65 DW-09 62118\$

INORGANIC ELEMENTS	METHOD	INSTRUMENT DETECTION LIMITS (ug/L)	···			··	······································	CONTRACT DETECTION LIMITS (ug/L)
ALUMINUM	P	7.0	25.5 UJ	25.9 UJ	28.8 UJ	34.0 UJ	29.2 UJ	
ANTIMONY	Ρ	5.0	5.0 U	200				
ARSENIC	P	4.0	4.0 U	60				
BARIUM	Р	1.0	33.4	44.1	43.7	94.1		10
BERYLLIUM	Р	1.0	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	35.2	200
CADMIUM	Р	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	5
CALCIUM	P	11	37200	26300	23800	56000	1.0 U	5
CHROMIUM	₽	2.0	2.0 U	2.0 U	2.0 U	2.0 U	23400	5000
COBALT	₽	2.0	2.0 U	10				
COPPER	P	1.0	51.7	12.0	23.1	16.9	2.0 U 10.9	50
IRON	Р	27	379	71.7	54.3	70.8	87.8	25
LEAD	Р	2.0	2.0 U	100				
MAGNESIUM	P	13	6410	2150	3890	5150	2310	3
MANGANESE	Р	1.0	250	8.9	2.5	10.4	77.9	5000
MERCURY	CV	0.20	0.20 UJ	15				
NICKEL	P	1.0	1.1 J	1.0 U	1.0 U	1.0 U	1.0 U	0.2
POTASSIUM	Р	60	1730	790	975	1720	500	40
SELENIUM	Р	5.0	5.0 U	5000				
SILVER	Р	2.0	2.0 UJ	2.0 UJ	2.0 U	2.0 U	2.0 U	5
SODIUM	P	55	12500	13800	2970	25400	13600	10
THALLIUM	P	2.0	3.4 UJ	2.4 UJ	2.2 UJ	2.0 U	3.2 UJ	5000
VANADIUM	Р	2.0	2.0 U	2.0 ⊔	2.0 U	2.0 U	2.0 U	10
ZINC	P	2.0	43.4	44.7	43.1	50.1	41.4	50
CYANIDE	CA	4.0	4.0 U	4.0_U	4.0 U	4.0 U	4.0 U	20 10

ANALYTICAL METHOD

F - FURNACE

P - ICP/FLAME AA CV - COLD VAPOR

AS - SEMIAUTOMATED

SPECTROPHOTOMETRIC

CA - MIDI-DISTILLATION

SPECTROPHOTOMETRIC

NOTE:

- J- QUANTITATION IS ESTIMATED DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW).
- U VALUE IS NON-DETECTED AND DETECTION LIMIT IS RAISED.
- UJ VALUE IS NON-DETECTED AND DETECTION LIMIT IS ESTIMATED.
- R VALUE IS REJECTED.

SITE: PUTNEY PAPER CO. - PUTNEY VT

DAS NO.: 0215F SDG NO.: DAF85G

STATION LOCATION: MATRIX:	AQUEOUS	=======================================	DAF86G DW.02 AQUEOUS ====================================		DAF87G DW.03 AQUEOUS		DAF89G DW.05 AQUEOUS		DAF09H DW.08 AQUEOUS ====================================		DAF17H RB.03 AQUEOUS	
TCDD/TCDF CONC.:	Ì pgy/L I	DLÆMPC*	pg/L	DIVEMPC"	pg/L	DL/EMPC*	pg/L	OL/EMPC*	pg/L	I DLÆMPC*	pg/L	======================================
2,3,7,8-TCDD	i UI	1.20	່	l 0.940	มา	l 1.14	tu	0.600	í I UJ	[] 0.480		
1,2,3,7,8-PeCDD	UJ ;	0.320	LIJ I	0.700	i ūi	1.20	1	0.380	03		i m	0.580
1,2,3,4 7,8-hxC D D	UJ	0.160	i uj	1.24	į ūj	0.480	i üi:	0.120	UJ		1	0.920*
1,2,3,6 7,8-HxCDD	į UJ į	2.24	ūj	2.92	i ü	4.04	l üj	1.10		0.440	1	2.14*
1,2,3,7,8,9-HxCDD	ا زن ا	1 98	U.J	0.840	່ ບັນ	0.500	اُ دُن	1.16	נט		į UJ	2.06
1,2 ,3 4,6,7,8-H pC DD	i uu i	8.16	Üį	2.82	i UJ	3.54	1 (1)		1 00	0.620	i m	2.42
OCDO	i u ji	55,00	- UJ	44.90	เ เม	50.70] ຜ [ຜ	7.54 60.00	i uj	5.64	į UJ	6.40
:	j			44.00	O.J.	30.70	1 63	60.00	į u	50 50	i m	44.00
2,3,7,8-TCDF	[UJ	0 840	UJ	0 420	UJ	0.360	i uuli	1.78	i u	1.26	່ ພ	
1,2,3,7,8-PeCDF	i mil	0.460	UJ	0 660	أفراب أ	0.140	i ūj	1.10	1 6	0.980		2.20
2,3.4,7,8-PeCDF	լ Այ	0.840	U.J	0 500	ÜĴ	0.060	i üji	0.600	i UJ	1 0.980	i	1.18
1,2 3,4,7,8·HxCDF	[Մ	2.82	W.	3.52	U.J.	2.18	i uji	1,28	i UJ		1	2.84*
1,2 3,6,7,8-HxCDF	l UJ j	1.40	LU	1.40	ָרָנ <u>ו</u> וּ	1.70	ו נעו	0.400	i uj		i m	1.84
1.2,3,7,8 9-HxCDF	l UJ j	1.24	LU j	0.420	Ü	0.320	ี่ นั้งไ	0.400		0.850	i m	
2 3,4,6,7,8-HxCDF	UJ	1.52	ū.i	0.480	ָ ֪֖֞֞֓֞֓֞֓֞֓֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	1.66	i uj	1.26	i m	0.186	į m	
1,2,3,4,6,7,8-HpCDF	i uu i	6,12	Ü	6.24	i UJ	3.16	i UJ	6.72	Í M	0.560	i ni	2.68
1,2,3,4,7,8,9-HpCDF j	i uui	3.88	UJ i	0.460	UJ i	2.74	i UJ i) W	6.56	i m	7.02
OCDF i	ບປ	21.60	ו נט	12.80	l UJ	11.70	l Dil	0.940	l m	0.020	l nn	4.32
j	i i		, , , , , , , , , , , , , , , , , , ,	12.50	03	11.70) 00 f	8.28	i nn	6.38	Í m	12.70
Totai Tetra-Dioxins	i tu	0.049	i tu	0.071	เกา	0.114	i uui	0.600	1		!	
Total Penta-Dioxins	UJ	0.059	uu i	0.055	i ŭi	0.055	00	0.040	į UJ		1,54 J	
Total Hexa-Dioxins	Li J	0.051	ו נט	0.107	i ūji	0.118	أننا	9.30	l UJ	0.067	0.129 J	ļ
Total Hepta-Dioxins	UJ [8.16	uj į	0.178		0.092	أدنا	5.18	1 (1)	2.64 5.64	0.059 J	
	1	Ì	į		["	5.12]) 5, 0-4	3.74 J	
Total Tetra-Furans	UJ	4.12	UJ }	0 740	UJ j	0.041	i uu i	0.860	i uu	1 3.18	l 2.20 J	
Total Penta-Furans	nn 1	1.26	UJ {	0.066	กา [0.057	i uu i	0.600	i ũ	0.280	0.22 J	
Total Hexa-Furans	กา (0 920 J	րդ լ	0.028	ן נט	0.036	i ūji	1.28	្រៃញ៉	5.66	i 0.22 3 1	0.040
Folal Hepta-Furans	nn I	10.00	ບມຸ	6.24	ָן נט	5.08	i ui	4.68	i ໜຶ່	0.102	1 111	4.32
TOVICE COURT FACTOR						===========	=== = ====	######################################	=====================================	=======================================		
TOXICITY EQUIVALENCY:		.ouj l		t LUD	0	.0UJ	į q	:0UJ	i	0.003	•	2.09J
% SOLIDS:]		IA į		IA j	٨	IA.	į ,	iA.	•	NA .		VA
DILUTION FACTOR	-	.0 [.0 [1	.0	i 1	.0		1.0		10
DATE SAMPLED:		2/06/98		2/06/98	1	2/06/98		2/06/98		12/06/98	,	1.0 12/06/98
DATE OF RECEIPT.		2/08/98	1	2/08/98	1	2/08/98		2/08/98	•	12/08/98	•	
SAMPLE EXTRACTION DATE:		2/10/98	1	2/10/9B j		2/10/98		2/10/98	•	12/10/98		12/08/98
ANALYSIS DATE: [1.	2/19/98	1	2/19/98		2/19/98		1/02/99	•	12/10/98 01/02/99	•	12/10/98
GC/MS I.D.: 		15580	1	15581	i	16582	i .	16505			:)1/04/99 15588

^{* =} These values are EMPCs (Estimated Maximum Possible Concentration); Values without an "** are the Detection Limits.

^{# =} These values are reported on a dry weight basis

ATTACHMENT C

BLOOD FARM DUMP

SURFACE WATER AND SEDIMENT SAMPLE ANALYTICAL RESULTS START

Samples Collected 7 December 1998

S./98010001\bloodhloodfiil.wpd 20 February 2001

SITE: PUTNEY PAPER CO. SLUDGE DISPOSAL CASE: 26713 SDG; ANYOD

TABLE 1 VOLATILE AQUEOUS ANALYSIS

LABORATORY: CEIMIC CORPORATION

DATE ANALYZED:

12/11/98

12/11/98

12/13/98

12/13/98

12/10/98

12/10/98

ug/L

SAMPLE NUMBER: ANY10 ANY11 ANY12 ANY13 APP17 APP18 SAMPLE LOCATION: SW-05 SW-06 SW-07 SW-08 **RB-03** TB-01 LABORATORY NUMBER: 981011-18 981011-19 981011-20 981011-21 981006-16 981006-17 COMPOUND CRQL Chloromethane 10 10 U 10 U 10 U 10 U 10 U 10 U Bromomethan 10 10 U 10 U 10 UJ 10 UJ 10 U.J 10 UJ Vinyl Chlor:de 10 10 U 10 U 10 U 10 U 10 U 10 U Chioroethane 10 10 U 10 U 10 UJ 10 UJ 10 U 10 U Methylene Chloride 10 10 U 10 U 10 U 10 U 10 U 10 U Acetone 10 10 UJ 10 U.I 10 UJ 10 UJ 10 UJ 10 UJ Carbon Disuffide 10 10 LJ 10 UJ 10 U 10 U 10 U 10 U 1.1-Dichloroethene 10 10 UJ 10 UJ 10 U 10 U 10 U 10 U 1.1-Dichloroethane 10 10 U 10 U 10 U 10 LL 10 U 10 U 1,2-Dichloroethene (Total) 10 10 U 10 U 10 U 10 U 10 U 10 U Chloroform 10 10 U 10 U 10 U 10 U 10 U 10 U 1.2-Dichloroethane 10 10 U 10 U 10 U 10 U 10 U 10 U 2-Butanone 10 10 UJ 10 UJ 10 UJ 10 UJ 10 UJ 10 UJ 1.1.1-Trichloroethane 10 10 U 10 U 10 U 10 U 10 U 10 U Carbon Tetrachloride 10 10 U 10 U 10 U 10 U 10 U 10 U Bromodichloromethane 10 10 U 10 U 10 U 10 U 10 U 10 U 1,2-Dichloropropane 10 10 U 10 U 10 U 10 U 10 U 10 U cis-1,3-Dichloropropene 10 10 U 10 U 10 U 10 U 10 U 10 U Trichloroethene 10 10 U 10 U 10 U 10 U 10 U 10 U Dibromochloromethane 10 10 U 10 U 10 U 10 LL 10 U 10 U 1,1,2-Trichlaroethane 10 10 U 10 U 10 U 10 U 10 U 10 U Benzene 10 10 U 10 U 10 U 10 U 10 U 10 U trans-1,3-Dichloropropene 10 10 U 10 U 10 U 10 U 10 U 10 U Bromoform 10 10 U 10 U 10 U 10 U 10 U 10 U 4-Methyl-2-pentanone 10 10 U 10 U 10 U 10 U 10 U 10 U 2-Hexanone 10 10 U 10 U 10 U 10 U 10 U 10 U Tetrachloroethene 10 10 U 10 U 10 U 10 U 10 U 10 U 1,1,2,2-Tetrachloroethane 10 10 U 10 U 10 U 10 U 10 U 10 U Toluene 10 10 U 10 U 10 U 10 U 10 U 10 U Chiprobenzene 10 10 U 10 U 10 U 10 U 10 U 10 U Ethylbenzene 10 10 U 10 U 10 U 10 U 10 U 10 U Styrene 10 10 U 10 U 10 U 10 U 10 U 10 U Xylene (total) 10 10 U 10 U 10 U 10 U 10 U 10 U DILUTION FACTOR: 1.0 1.0 1.0 1.0 1.0 1.0 DATE SAMPLED: 12/07/98 12/07/98 12/07/98 12/07/98 12/06/98 12/06/98

CASE: 26713 SDG: ANYOO, APPO2 LABORATORY: CEIMIC CORPORATION

TABLE 3 SEMIVOLATILE AQUEOUS ANALYSIS PU/L

SAMPLE NUMBER: ANY10 ANY11 ANY12 ANY13 APP17 SAMPLE LOCATION: SW-05 SW-06 SW-07 SW-08 RB-03 LABORATORY NUMBER: 981011-18 981011-19 981011-20 981011-21 981006-16 COMPOUND CROL Phenol 10 10 LF 10 U 10 U 10 U 10 (1 bis(2-Chloroethyl)ether 10 10 U t0 U 10 U 10 U 10 U 2-Chlorophenol 10 10 U 10.0 10 U 10 U 10 U 1,3-Dichlorobenzene 10 10 U 10 U 10 U 10 U 10.11 1,4-Dichlurobenzene 10 10 U 10 U 10 U 10 U 10 U 1,2 Dichlorobenzene 10 10 U 10 U 10 U 10 U 10 U 2 Methylphonol 10 10 UJ 10 II 10 U 10 U 10 U 2,2'-Oxybis(1-chtoropropane) 10 10 U.I 10 UJ 10 UJ 10 UJ 10 U 4-Methylphenol 10 10 U 10 U 10 U 10.11 10 U N-Nitroso-di-n-propylamine 10 10 U 10.11 10 U 10 U 10 U Hexachloroethane 10 10 U 10 U 10 U 10 Ų 10 U Nitrobenzene 10 10 U 10 U 10 U 10 U 10 U Isophorone 10 10 U 10 U 10 U 10 U 10 LI 2-Nitrophenol 10 10 U 10 U 10 U 10 U 10 LL 2,4-Dimethylphenn! 10 10 U 10 U 10 U 10 U 10 U bis(2-Chloroethoxy)methane 10 10 U 10 U 10 U 10 U 10 U 2,4-Dichlorophenot 10 10 U 10 U 10 U 10 U 10 U 1,2,4-Trichlorobenzene 10 10 U 10 U 10 U 10 U 10 U Noobthalene 10 10 U 10 U 10 U 10 U 10 Ų 4-Chloroaniline 10 10 UJ 10 UJ 10 UJ 10 UJ 10 U Hexachlorobutadiene 10 10 U 10 U 10 U 10 U 10 U 4-Chloro-3-methylphenol 10 10 U 10 L/ 10 U 10 U 10 U 2-Methylnaphthalene 10 10.11 10 U 10 U 10 U 10 U Hexachlorocyclopentadiene 10 10 U.I 10 UJ 10 UJ 10 UJ 10 U 2,4,6-Trichlorophenol 10 10 U 10 Ų 10 U 10 U 10 U 2.4.5-Trichlorophenol 25 25 Ų 25 LJ 25 U 25 U 25 U 2-Chloronaphthalene 10 10.11 10 U 10 LI 10 U 10 U 2-Nitroaniline 25 25 U 25 U 25 U 25 LJ 25 U Dimethylohthalate 10 10 U 10 U 10 U 10 U 10 U Acenaphthylene 10 10 U 10 U 10 U 10 U 10 U 2.6-Dinitrotoluene 10 10 U 10 U 10 U 10 U 10 U 3-Nitroantine 25 25 U 25 U 25.11 25 U 25 U Acenaphthene 10 10 U 10 U 10 U 10 U 10 U 2.4-Dinitrophenal 25 25 U 25 U 25 U 25 U 25 UJ 4-Nitrophenol 25 25 Ų 25 U 25 U 25 U 25 U Dibenzofuran 10 10 U 10 17 10 U 10 U 10 U 2.4-Dinitrototuerie 10 10 LF 10 U 10 U 10 U 10 U Diethylphthalate 10 to u 10 U 10 U 10 11 10 LI Fluorene 10 10 U 10 U 10 LL 10 U 10 U 4-Chlorophenyl phenylether 10 10 U 10 U 10 U 10 U 10 U 4-Nitroaniline 25 25 U 25 U 25 U 25 U 25 II 4,6-Dinstro 2-methylphenol 25 25 U 25 U 25 U 25 U 25 Ų N-Nitrosodiahenvlamine(1) 10 10 UJ 10 UJ 10 UJ 10 UJ 10 U 4-Bromophenyl-phonylether 10 10 U 10 LF 10 U 10 U 10 U Hexachlorobenzene 10 10 U 10 U 10 U 10 LL 10 U Pentachlorophenot 25 25 U 25 U 25 U 25 U 25 U Phenanthrene 10 10 U 10 U 10 U 10 U 10 U Authracene 10 10 U 10 Ų 10 U 10 U 10 U Carbazote 10 10 U 10 U 10 U 10 U 10 U Di-n-butylphthalate 10 10 U 10 U 10 U 10 U 10 H Fluoranthene 10 10 U 10 U 10 U 10 LI 10 U Pyrene 10 10 UJ 10 UJ 10 UJ 10 UJ 10 U Butylbenzylphthalale 10 10 U 10 U 10 U 10 U 11 3,3'-Dichlorobenzidine 10 10 113 10 UJ 10 UJ 10 U.I 10 U Benzo(a)anthracene 10 10 UJ 10 UJ 10 13 10 UJ 10 U Chrysene 10 10 UJ 10 U.I 10 UJ 10 UJ 10 Ų Bis(2-ethylhexyl)phthalate 10 10 UJ 10 UJ 10 UJ 10 UJ 5...1 Di-n-octy/phthalate 10 10 UJ 10 UJ 10 UJ 10 UJ 10 UJ Benzo(b)fluoranthene 10 10 UJ 10 U 10 U 10 UJ 10 U Denzo(k)fluoranthene 10 10 UJ 10 11 10 U 10 UJ 10 LU Benzo(a)pyrene 10 10 111 10 U 10 U 10 U.J. 10 U Indeno(1,2,3-cd)pyrene 10 10 UJ 10 U 10 U 10 U.J 10 U Dibenz(a,h)anthracene 10 10 U.J 10 U 10 U 10 UJ 10 U Benza(g,h,i)perylene 10 10 U.J 10 U 10 U 10 UJ 10 U DILUTION FACTOR: 1.0 1.0 1.0 1.0 1.0 DATE SAMPLED: 12/07/98 12/07/98 12/07/98 12/07/98 12/06/98 DATE EXTRACTED: 12/13/18 12/13/18 12/13/18 12/13/18 12/11/98 DATE ANALYZEO: 12/23/98 12/23/98 12/23/98 12/23/98 01/06/99

CASE: 26713 SDG: ANY00, APP02 LABORATORY: CEIMIC CORPORATION

TABLE 3 PESTICIDE/POLYCHLORINATED BIPHENYL AQUEOUS ANALYSI µg/L

						•
SAMPLE NUMBE	•	ANY10	ANY11	ANY12	ANY13	APP17
SAMPLE LOCATION		SW-05	SW-06	SW-07	SW-08	RB-03
LABORATORY N	JMBER;	981011-18	9 8 1011-19	981011-20	981011-21	981006-16
						30 1000 10
COMPOUND	CRQL					
alpha-BHC	0.050	0.050 ↓	0.050 U	_	_	
beta-BHC	0.050	0.050 U	0.050 U	R	0.050 U	0.050 UJ
delta-BHC	0.050	0.050 U		R	0.050 U	0.050 UJ
gamma-BHC (Line		0.050 U	0.050 U	R -	0. 0 50 U	0.050 UJ
Heptachlor	0.050	0.050 U	0.050 U	R	0.050 U	0.050 UJ
Aldrin	0.050		0.050 U	R	0.050 U	0.050 UJ
Heptachlor Epoxid		0.050 U	0.050 U	R	0.050 U	0.050 UJ
Endosulfan I		0.050 U	0.050 U	R	0.050 U	0.050 UJ
Dieldrin	0.050	0.050 U	0.050 U	R	0.050 U	0.050 UJ
4.4'-DDE	0.10	0. 10 U	0.10 U	R	0. 10 U	0.10 UJ
Endrin	0.10	0.10 U	0.10 U	R	0.10 U	0.10 UJ
	0.10	0.10 U	0.10 U	R	0.10 U	0. 10 UJ
Endosulfan II	0.10	0.10 U	0.10 U	R	0.10 U	0.10 UJ
4,4'-DDD	0.10	0.10 U	0.10 U	R	0.10 U	0.10 UJ
Endosulfan Suifate		0.10 U	0.10 U	R	0.10 U	0.10 UJ
4.4'-DDT	0.10	0.10 U	0. 10 U	R	0.10 U	0.10 UJ
Methoxychlor	0.50	R	R	R	R	R
Endrin Ketone	0.10	0.10 U	0.10 U	R	0.10 U	0.10 UJ
Endrin Aldehyde	0.10	0.10 U	0.10 U	R	0.10 U	0.10 UJ
alpha-Ch i ordane	0.050	0.050 U	0.050 U	R	0.050 U	0.050 UJ
gamma-Chlordane	0.050	0.050 U	0.050 U	R	0.050 U	0.050 UJ
Toxaphene	5.0	5.0 U	5.0 U	R	5.0 U	5.0 UJ
Aroclor-1016	1.0	1.0 U	1.0 U	R	1.0 U	
Arocior-1221	2.0	2.0 U	2.0 U	R	2.0 U	1.0 UJ
Aroclor-1232	1.0	1.0 U	1.0 U	R	1.0 U	2.0 UJ
Aroclor-1242	1.0	1.0 U	1.0 U	R	1.0 U	1.0 UJ
Aroclor-1248	1.0	1.0 U	1.0 U	R	1.0 U	1.0 UJ
Aroclor-1254	1.0	1.0 U	1.0 U	R		1.0 UJ
Arcolor-1260	1.0	1.0 U	1.0 U		1.0 U	1.0 UJ
		1.0 0	1.0 0	R	1.0 U	1.0 UJ
DILU"	TION FACTOR:	1.00	1.00	1.00	1 00	1.00
DATE	SAMPLED:	12/07/98	12/07/98	12/07/98	12/07/98	12/06/98
DATE	EXTRACTED:	12/09/98	12/09/98	12/09/98	12/09/98	
DATE	ANALYZED:	12/31/98	12/31/98	12/31/98	12/09/96	12/09/98
			12.01/00	1210 1100	12/3 1/96	12/30/98

CASE: 26713 SDG: MALX36

LABORATORY: CHEMTECH CONSULTING GROUP

TABLE 1 INORGANIC WATER ANALYSIS ug/L

SAMPLE NUMBER: MALX40 MALX41 MALX42 MALX43 MALX73 SAMPLE LOCATION: SW-05 SW-06 SW-07 SW-08 RB-03 LABORATORY NUMBER: 62143S 62144\$ 62145S 62148S 62107S

INORGANIC ELEMENTS	METHOD	INSTRUMENT DETECTION LIMITS (ug/L)						CONTRACT DETECTION LIMITS (ug/L)
ALUMINUM	P	7.0	57.5 UJ	39.0 UJ	833 J	1440 J	7.0 U	200
ANTIMONY	Р	5.0	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	60
ARSENIC	₽	4.0	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	50
BARIUM	P	1.0	19.0	20.1	32.3	33.6	1.0 U	200
BERYLLIUM	P	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.3 UJ	5
CADMIUM	Р	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	5
CALCIUM	Р	11	168CD	12300	19800	17200	11.0 U	500 0
CHROMIUM	Р	2.0	2.0 U	2.0 U	2.0 U	3.4 J	2.0 U	10
COBALT	P	2.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	50
COPPER	Р	1.0	27.9	17. 6	14.6	14.1	1.0 U	25
IRON	P	27	581	215	7180	9220	27.0 U	100
LEAD	P	2.0	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0	3
MAGNESIUM	P	13	3970	3050	5090	4660	13.0 U	5000
MANGANES	Р	1.0	207	90.8	511	418	1.0 U	15
MERCURY	CA	0.20	0.20 UJ	0.20 UJ	0.20 UJ	0.20 UJ	0.20 U	0.2
NICKEL	P	1.0	1.0 J	1.0 U	2.3	3.5	1.0 U	40
POTASSIUM	P	60	1220	862	1370	1210	60.0 U	5000
SELENIUM	Р	5.0	5.0	5.0 U	5.0 U	5.0 U	5.0 U	5000
SILVER	Р	2.0	2.0 UJ	2.0 UJ	3.4 UJ	4.2 UJ	2.0 U	10
SODIUM	₽	5 5	19600	13800	20600	17200	55.0 U	5000
THALLIUM	P	2.0	2.0 UJ	2.0 UJ	4.2 U	2.0 UJ	2.0 U	10
VANADIUM	Þ	2.0	2.0	2.0	2.5 J	3.9 J	2.3 UJ	50
ZINC	₽	2.0	45.6 U	45.6 U	41.4 U	52.0 U	2.0 U	20
CYANIDE	CA	4.0	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	10

ANALYTICAL METHOD

F - FURNACE

P - ICP/FLAME AA

CV - COLD VAPOR

AS - SEMIAUTOMATED

NOTE:

- J QUANTITATION IS ESTIMATED DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW).
- U VALUE IS NON-DETECTED AND DETECTION LIMIT IS RAISED.
- UJ VALUE IS NON-DETECTED AND DETECTION LIMIT IS ESTIMATED.
- R VALUE IS REJECTED.

TABLE 1 CASE: 0214F SDG: DAF89F_O **VOLATILE SOIL ANALYSIS - LOW LEVEL** LABORATORY: STL\CHICAGO μg/kg

SAMPLE NUMBER: DAF96F SAMPLE LOCATION: SD-08 LABORATORY NUMBER: 9812G412-8

LABORATORY NUMBER:		9812G412-8
COMPOUND	CRQL	
Chloromethane	10	12 U
Bromomethane	10	12 U
Vinyl Chloride	10	12 U
Chloroethane	10	12 U
Methylene Chloride	10	12 U
Acetone	10	12 U
Carbon Disulfide	10	12 Ū
1,1-Dichloroethene	10	12 U
1,1-Dichloroethane	10	12 U
1,2-Dichloroethene (Total)	10	12 U
Chloroform	1 0	12 U
1,2-Dichloroethane	10	12 U
2-Butanone	10	12 U
1,1,1-Trichloroethane	10	12 U
Carbon Tetrachloride	10	12 U
Bromodichloromethane	10	12 U
1,2-Dichtoropropane	10	12 U
cis-1,3-Dichloropropene	10	12 U
Trichloroethene	10	12 U
Dibromochloromethane	10	12 U
1,1,2-Trichloroethane	10	12 U
Benzene	10	12 U
trans-1,3-Dichloropropene	10	12 U
Bromoform	10	12 U
4-Methyl-2-pentanone	10	12 U
2-Hexanone	10	12 U
Tetrachloroethene	10	12 U
1.1,2,2-Tetrachloroethane	10	12 U
Toluene	10	12 U
Chlorobenzene	10	12 U
Ethylbenzene	10	12 U
Styrene	10	12 U
Xylene (total)	10	12 U
DILUTION FACTOR:		1.0
DATE SAMPLED:		12/07/98
DATE ANALYZED:		12/11/98

DATE ANALYZED: 12/11/98 % MOISTURE: 14

NOTE: RESULTS ARE REPORTED ON A DRY WEIGHT BASIS

S:\98050230\DAF89FV1.WK4

VOLATILE SOIL ANALYSIS - LOW LEVEL

CASE: 0214F SDG: DAF89F_O LABORATORY: STLICHICAGO

TABLE 1 μg/kg

DAF47G DAF49G DAF48G

SAMPLE NUMBER: SAMPLE LOCATION: LABORATORY NUMBER:		DAF97F SD-09 9812G412/9	DAF99F SD-11 9812G412-11	DAF46G SD-12 9812G412-12	DAF47G SD-13 9812G412-13	DAF48G SD-14 9812G412-14	DAF49G SD-15 9812G412-15
COMPOUND	CROL						
Chloromethane	10	14 U	11 U	13 U	12 U	12 U	13 U
Bromomethane	10	14 U	11 U	13 U	12 U	12 U	13 U
Vinyl Chloride	10	14 U	11 U	13 U	12 U	12 U	13 U 13 U
Chloroethane	10	14 U	11 U	13 U	12 U	12 U	13 U
Mathylana Chlorida	10	14 U	11 U	13 U	12 U	12 U 12 U	13 UJ
Acetone	10	14 U	11 U	13 U	12 U		13 U
Carbon Disulfide	10	14 U	11 U	13 U	12 U	12 U	13 UJ
1,1-Dichloroethene	10	14 U	11 U	13 LJ		12 U	13 U
1,1-Dichloroethane	10	14 U	11 U	13 U	12 U	12 U 12 U	13 U
1,2-Dichloroethene (Total)	10	14 Ú	11 U	13 U	12 U	•	13 U
Chloroform	10	14 U	11 U	13 U	12 U	12 U	13 U
1,2-Dichloroethane	10	14 U	11 U	13 U	12 U	12 U	
2-Butanone	10	14 U	11 U	13 U	12 U	12 U	13 U 13 U
1,1,1-Trichloroethane	10	14 U	11 U	13 U	12 U	12 U 12 U	13 U
Carbon Tetrachloride	10	14 U	11 U	13 U	12 U 12 U	12 U	13 U
Bromodichloromethane	10	14 U	11 U	13 U	12 U	12 U	13 D
1,2-Dichloropropane	10	14 U	11 U	13 U	12 U	12 U	13 D
cis-1,3-Dichloropropene	10	14 U	11 U	13 U	12 U	12 U	13 U
Trichtorcethene	10	14 U	11 U	13 U	12 U	12 U	13 U
Dibromochloromethane	10	14 U	11 U	13 U	12 U	12 U	13 U
1,1,2-Trichloroethane	10	14 U	11 U	13 U		12 U	13 U
Benzene	10	14 U	11 U	13 U	12 U 12 U	12 U	13 U
trans-1,3-Dichloropropene	10	14 U	11 U	13 U 13 U	12 U	12 U	13 1)
Bromoform	10	14 U	11 U	13 U	12 U	12 U	13 U
4-Methyl-2-pentanone	10	14 U	11 U	13 U	12 U	12 U	13 U
2-Hexanone	10	14 U	11 U	13 U	12 U	12 U	13 U
Tetrachloroethena	10	14 U	11 U		12 U	12 U	13 U
1,1,2,2-Tetrachloroethane	10	14 U	11 U	13 U 13 U	12 U	12 U	13 U
Toluene	10	14 U	11 U		12 U	12 U	13 U
Chlorobenzene	10	14 U	11 U	13 U 13 U	12 U	12 U	13 U
Ethylbenzene	10	14 U	11 U	13 U	12 U	12 U	13 U
Styrena	10	14 U	11 U			12 U	13 U
Xylene (total)	10	14 U	11 U	13 U	12 U	12 0	(3.0
DILUTION FACTOR:		1.0	1.0	1.0	1.0	1.0	1.0
DATE SAMPLED:		12/07/98	12/07/98	12/07/98	12/07/98	12/07/98	12/07/98
DATE ANALYZED:		12/12/98	12/14/98	12/14/98	12/14/98	12/14/98	12/14/98
% MOISTURE:		30	11	22	18	17	22

CASE: 0214F SDG: DAF89F_O LABORATORY: STL\CHICAGO

TABLE 1 VOLATILE SOIL ANALYSIS - LOW LEVEL µg/kg

SAMPLE NUMBER: SAMPLE LOCATION: LABORATORY NUMBER:	·	DAF50GRE SD-16 9812G412-16	DAF52G SD-16 9812G412-16
COMPOUND	CRQL		
Chloromethane	10	16 U	
Bromomethane	10	16 U	
Vinyl Chloride	10	16 L	
Chloroethane	10	16 U	
Methylene Chloride	10	16 U	
Acatona	10	20 J	
Carbon Disulfide	10	16 L	-
1.1-Dichloroethene	10	16 L	
1.1-Dichloroethane	10	16 L	
1.2-Dichloroethene (Total)	10	16 L	=
Chloroform	10	16 L	
1,2-Dichloroethane	10	10 L	
2-Bulanone	10	16 L	=
1.1.1-Trichloroethane	10	16 L	
Carbon Tetrachtoride	10	16 t	_
Bromadichloromethane	10	16 L	=
1,2-Dichloropropane	10	16 L	
cis-1,3-Dichloropropene	10	16 Ł	
Trichtoroethene	10	16 L	
Dibromochloromelhane	10	16 L	
1,1,2-Trichloroethane	10	16 L	
Benzene	10	16 L	
trans-1,3-Dichloropropene	10	16 L	
Bromoform	10	16 L	
4-Methyl-2-pentanone	10	16 L	
2-Hexanone	10	16 L	
Tetrachloroethene	10	16 L	
1,1,2,2-Tetrachioroethane	10	16 L	
Toluene	10	16 L	
Chlorobenzene	10	16 L	
Ethylbenzene	10	16 L	
Styrene	10	16 L	
Xylene (total)	10	16 U)) 16 U
DILUTION FACTOR:		1.0	1,0
DATE SAMPLED:		12/07/98	12/07/98
DATE ANALYZED:		12/14/98	12/14/98
% MOISTURE:		36	39

CASE: 0214F SDG: DAF69G_O LABORATORY: STL/CHICAGO

TABLE 1 VOLATILE AQUEOUS ANALYSIS µg/L

SAMPLE NUMBER: SAMPLE LOCATION: LABORATORY NUMBER:		DAF55G TB-03 9812G413-006	DAF53G RB-01 9812G413-007
COMPOUND	CRQL.		
Chloromelhane	10	10 U	
Bromomelhane	10	10 U	
Vinyl Chloride	10	10 U	
Chloroethane	10	10 U	
Methylene Chloride	10	10 L	
Acetone	10	10 L	J 10 U
Carbon Disulfide	10	10 L	
1.1-Dichloroethene	10	10 L	
1,1-Dichloroethane	10	10 L	J 10 U
1,2-Dichloroethene (Total)	10	10 L	J 10 U
Chloroform	10	10 L	-
1,2-Dichloroethane	10	10 L	
2-Bulanone	10	10 U	
1,1,1-Trichloroethane	10	10 L	
Carbon Tetrachtoride	- 10	10 L	-
Bromodichloromethane	10	10 L	
1,2-Dichloropropane	10	10 L	
cis-1,3-Dichloropropene	10	10 L	
Trichloroethene	10	10 U	-
Dibromochloromethane	10	10 L	-
1,1,2-Trichloroethane	- 10	10 U	
Benzene	10	10 L	
trans-1,3-Dichloropropene	10	10 L	
Bromoform	10	10 L	· · · · · · · · · · · · · · · · · · ·
4-Methyl-2-pentanone	10	10 L	
2-Hexanone	10	10 L	
Tetrachloroethene	10	10 L	
1,1,2,2-Tetrachloroethane	10	10 U	•
Toluene	10	10 t	
Chlorobenzene	10	10 L	-
Ethylbenzene	10	10 t	-
Styrene	10	10 L	-
Xylene (tolal)	10	10 L	J 10 U
DILUTION FACTOR:		1.0	1.0
DATE SAMPLED:		12/07/98	12/07/98
DATE ANALYZED:		12/15/98	12/15/98

TABLE 2 SEMIVOLATILE SOIL ANALYSIS μg/k**g**

SITE: PUTNEY PAPER SLUDGE DISPOSAL SITE CASE: 0214F SDG: DAF89F_O LABORATORY: STL\CHICAGO

SAMPLE NUMBER:	DAF96F
SAMPLE LOCATION:	SD-08
LABORATORY NUMBER:	9812G412-8

CABORATORY NUMBER:		9812G412-8
COMPOUND	CRQL	
Phenol	330	380 U
bis(2-Chloroethyl) ether	330	380 U
2-Chlorophenol	330	380 U
1,3-Dichlorobenzene	330	380 U
1,4-Dichlorobenzene	330	380 U
1,2-Dichlorobenzene	330	380 U
2-Methylphenol	330	380 ↓
2,2'-Oxybis(1-chloropropane)	330	380 U
4-Methylphenol N-Nitroso-di-n-propylamine	330	380 U
Hexachloroethane	330 330	380 U
Nitrobenzene	330	390 U 380 U
Isophorone	330	380 U
2-Nitrophenol	330	380 U
2,4-Dimethylphenol	330	380 U
bis(2-Chloroethoxy)methane	330	380 U
2,4-Dichlorophenol	330	380 U
1,2,4-Trichlorobenzene	330	380 U
Naphthalene 4-Chloroaniline	330	380 U
Hexachlorobutadiene	330 330	380 U
4-Chloro-3-methylphenol	330	380 U 380 U
2-Methylnaphthalene	330	360 U
Hexachlorocyclopentadiene	330	380 U
2,4,6-Trichlorophenol	330	380 U
2,4,5-Trichlorophenol	830	960 U
2-Chloronaphthalene	330	380 U
2-Nitroaniline	830	960 U
Dimethylphthalate Acenaphthylene	330	380 U
2.6-Dinitrotoluene	330 330	380 U
3-Nitroaniline	830	380 U 960 U
Acenaphthene	330	380 U
2,4-Dinitrophenol	830	960 UJ
4-Nitrophenol	830	980 UJ
Dibenzofuran	330	380 U
2,4-Dinitrotoluene	330	380 U
Diethylphthalate	330	380 U
4-Chlorophenyl-phenylether Fluorene	330 330	380 U
4-Nitroaniline	830	380 U 960 U
4,8-Dinitro-2-methylphenol	830	960 U
N-Nitrosodiphenylamine(1)	330	380 U
4-Bromophenyl-phenylether	330	380 U
Hexachlorobenzene	330	380 U
Pentachiorophenol	830	960 U
Phenanthrene	330	380 U
Anthracene	330	380 U
Carbazole Di-n-butylphthalate	330	380 U
Fluoranthene	330 330	380 U
Pyrene	330	380 U 380 UJ
Butylbenzylphthalate	330	380 U
3,3'-Dichforobenzidine	330	380 U
Benzo(a)anthracene	330	380 U
Chrysene	330	380 ∪
Bis(2-ethylhexyl)phthalate	330	380 U
Di-n-octylphthalate	330	380 U
Benzo(b)fluoranthene	330	380 U
Benzo(k)fluoranthene Benzo(k)rwrene	330	380 U
Benzo(a)pyrene Inde⊓o(1,2,3-cd)pyrene	330 330	380 U
Dibenz(a,h)anthracene	330	380 U 380 UJ
Benzo(g,h,i)perylene	330	380 UJ
** *** *		333 33
DILUTION FACTOR:		1.0

DILUTION FACTOR: 1.0 DATE SAMPLED: DATE EXTRACTED; DATE ANALYZED: % MOISTURE: 12/07/98 12/19/98 12/29/98

.TE: PUTNEY PAPER SLUDGE DISPOSAL SITE JASE: 0214F SDG: 0AF89F_0 LABORATORY: STLICHICAGO

TABLE 2 SEMIYOLATILE SOIL ANALYSIS µg/kg

SAMPLE NUMBER: SAMPLE LOCATION: DAF47G SD-13 DAF97F DAF48G SD-14 DAF49G SD-15 DAF99F OAF48G SD-09 SD-11 SD-12

SAMPLE LOCATIO	N;	SD-09	SD-11	SD-12	\$D-13	SD-14	SD-15
LABORATORY NUMBE	R:	9 5 12G412-9	9812G412-11	9812G41Z-12	9812G412-13	9812G412-14	9812G412-15
COMPOUND	CRQL						
		.=			_		÷.
Phenol	330	470 U	360 U				
bis(2-Chloroethyi) ether	330 330	470 U 470 U	360 U 360 U				
2-Chlorophenoi	330	470 U	380 U				+
1,3-Dichtoropenzene 1,4-Dichtorobenzene	330	470 U	380 U				
1,2-Dichloropenzene	330	470 U	380 U				
2-Methylphenol	330	470 U	360 U	•			
2,Z-Oxybis(1-chloropropane)	330	470 U	380 U	-			
4-Methylphenol	330	470 U	360 U				
N-Nitroso-di-n-propylamine	330	470 U	380 U				
Hexachloroethane	330	470 U	360 U				
Nitrobenzene	330	470 Ú	380 U	420	Ų 400 €	J 400 (
(saphorone	330	470 U	360 U	420	U 400 U	J 400 :	1 430 U
2-Nitrophenol	330	470 U	360 U	420	U 400 (J 400 1	J 430 U
2,4-Dimethylphenol	330	470 U	360 U		-		
bis(2-Chloroethoxy)methana	. 330	470 U	360 L				
2.4-Dichloropnenot	330	470 U	380 U				
t,24Trichloropenzene	330 330	470 U 470 U	360 U 360 U			·	
Naonthalene 4-Chloroaniline	330 330	470 U	360 U				
Hexachloroburadiene	330	470 U	380 (
4-Chloro-3-methylphenol	330	470 U	380 (
2-Methylnaphthalene	330	470 U	360 i	_			
Нехаспіогосусіореntadiene	330	470 U	280 (-			
Z,4,5-Trichlorophenol	330	470 U	360 L	420	U 400 U	j 400 :	
2,4,5-Trichlorophenol	930	1200 U	910 L	1100	의 1000 (J 990 (
2-Chloronaphthaiene	330	470 U	360 U				J 430 U
2-Nitroaniline	820	1200 U	910 L			-	
Dimethylphthalate	330	470 U	360 t				
Acenaphthylene	330	470 U	360 (
2.6-Diritrotoluene	330	470 U	380 1				
3-Nitroanitine	820 330	1200 U 470 U	910 t 360 t				
Acenaphthane 2.4-Dinitrophenoi	830	1200 U			-		
4-Nitropnenoi	830	1200 U	-				
Dibenzofuran	330	470 U					
2,4-Dinitrotoluene	330	470 U					
Diethy:phthalate	330	470 U	350 (420	U 400 I	J 400 i	J 430 U
4-Chlorophenyl-pnenylether	330	470 U	360 U	420	U 400 I	J 400 !	J 430 U
Fluorene	330	475 U					•
4-Nigcardine	830	1206 U					-
4,6-Dinitro-2-methylphenol	830	1200 U					
N-Nitrosodionenylamine(1)	330	470 U					
4-Bromophenyl-unenylether	330	470 U					
Hexachioropenzene	330 830	470 U 1200 U					
Pentachiorophenol Phenanthrene	330	470 U					
Anthracene	330	470 U					
Carbazole	330	470 U					
DI-n-butylphthalate	330	470 U					
Fluorantitene	330	78 J					
Pyrene	330	79 j	360	JJ 420	UJ 400	U 400 I	U 430 U
Butylbenzylphthalate	330	470 U	350			-	
3,3'-Dichlorobenzidine	330	470 L					
Benzo(a)anthracene	330	470 U					
Chrysene	330	470 U					
Bis(2-ethylhexyl)phthalate	330	470 L					
Di-n-octylphthalate	330 330	470 U					
Benzo(b)fluoranthene Benzo(k)fluoranthene	330 330	470 L					
Senzo(a)pyrene	330	470 (
Indeno(1,2,3-cd)pyrene	330	470 (
Dibenz(a,h)anthracene	330	470 L					
Benzo(g,h,i)perylens	330	470 (
DILUTION FACT	OR:	1,0	1.0	1.0	1.0	1.0	1.0
DATE SAMPL		12/07/98	12/07/98	12/07/98		12/07/98	12/07/98
DATE EXTRACT		12/19/98	12/19/98	12/19/98		12/19/98	12/19/98
DATE ANALYZ		12/29/98	12/29/98	12/29/98		01/04/99	01/04/99
% MOISTU	RE:	30	11	22	. 18	17	22

·= -

. 72: PUTNEY PAPER SLUDGE DISPOSAL SITE (ASE: 0214F SDG: DAF89F_O LABORATORY: STLICHICAGO

SAMPLE NUMBER: SAMPLE LOCATION: LABORATORY NUMBER:		DAF50G SD-18 9812G412-18	DAF52G SD-18 9812G412-18
COMPOUND	CRQL		
Phenoi	330	520 U	540 U
bis(Z-Chloroethy)) ether	330	520 U	540 U
Z-Chlorophenol	330	520 U 520 U	
1,3-Dichlorobenzene	330 330	520 U	
1,4-Dichlorobenzene 1,2-Dichlorobenzene	330	520 U	
2-Methylohenol	330	520 U	
2.27-Oxyois(1-chloropropane)	330	520 U	
4-Methylphenol	330	520 U	540 U
N-Nitroso-di-n-propylamine	330	520 U	540 U
Hexachloroethane	330	520 U	
Nárobenzene	330	520 U	
sophorone:	330	520 U	
2-Nitrophenol	330	520 U	
2,4-Oimethylphenol	330	520 U	
bis(2-Chloroethoxy)methane	330	520 ป 520 ป	
2,4-Dichleropnend	330 330	520 U	
1,2,4-Trichlorobenzene Naphthalene	330	520 U	
4-Chicroantine	330	520 U	
Hexachtoroburaciene	330	520 (
4-Chioro-3-methylohenol	330	520 (
Z-Methyinaphithalene	330	52 0 U	540 U
Hexachlorocyclopentadiene	330	520 L	540 U
2,4,6-Trichlarophenoi	330	520 t	J 540 U
2,4,5-Trichtorophenot	8 30	130 0 t	
2-Chloronachthaiene	330	520 (
2-Nitroaniline	830	1300 (
Dimetrylphthalate	330	520 (
Acenaprithylene	330	520 U 520 U	
2.5-Cinitrotoluene	330 830	1300 l	-
3-Nitroaniline Acenaonthene	330	520 l	
Z.4-Dinitrophenol	830	1300 (
4-Nitrophenol	830	1300 !	
Dibenzofuran	330	520 t	J 540 U
2.4-Dinitrotoluene	330	520) 540 U
Olethylphthaiate	330	520 (
4-Chlorophenyi-phenylether	330	520	
Flyorene	330	520	
4-Nitroaciline	920	1200	
4.6-Dinitro-2-methylphenol	830	1300	
N-Nitrosodicnenylamine(1)	330	520 ° 520	•
4-8romophenyl-orienylether	330 330	520	
Hexachlorophenoi Pentachlorophenoi	330 830	1300	
Phenanthrene	330	520	-
Anthracene	330	520	-
Carpazole	330	520	U 540 U.I
Di-n-buty(pnthatate	330	520	บ 540 ป
Fluoranthene	330	520	
Pyrane	330	520	
Butyibenzylphthalate	330	520	_
3,3'-Dichlorobenzidine	330	520	
Benzo(a)anthracene	330	520	
Chrysene	330	520 520	-
Bis(2-ethylhexyl)phthalate	330 330	520	
Di-n-octylphthalate Berzo(b)fluoranthene	330	520	
Benzo(k)fluoranthene	330	520	
Benzo(a)pyrene	330	520	
Indeno(1,2,3-cd)pyrene	330	520	
Dibenz(a,h)anthracene	330	520	
Senzo(g.a.i)perylene	330	520	UJ 540 U
DILUTION FACTOR:		1.0 12/07/98	1.0 12/07/98
DATE SAMPLED: DATE EXTRACTED:		12/19/98	12/19/98
DATE ANALYZED:		12/30/98	
% MOISTURE:		38	
			- "

SITE: PUTNEY PAPER SLUDGE DISPOSAL CASE: 0214F SDG: DAF69G_O LABORATORY: STLJ CHICAGO

TABLE 3 SEMIVOLATILE WATER ANALYSIS 1994

SAMPLE NUMBE SAMPLE LOCATIO LABORATORY NUMBE	N:	DAF53G R8-01 9812G413-007
COMPOUND	CRQL	
SAMPLE LOCATIO LABORATORY NUMBE	N: :R:	R8-01
Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	10 10 70	10 U 10 U 10 U
Oibenz(a,n)anthracene Benzo(g,h.i)perylene	10 10	10 U 10 U
DILUTION FAC DATE SAMP DATE EXTRAC DATE ANALY	LED: :TED:	1.0 12/07/98 12/10/98 12/16/98

TABLE 3 PESTICIDE/POLYCHLORINATED BIPHENYL SOIL ANALYSIS µg/kg

CASE: 0214F SDG: DAF89F_O LABORATORY: STLICHICAGO

SAMPLE NUMBER: SAMPLE LOCATION: LABORATORY NUMBER:		DAF96F SD-08 9812G412-8
COMPOUND	CRQL	
alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) Heptachlor Aidrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan III 4,4'-DDD Endosulfan Sulfate 4,4'-DDT Methoxychlor Endrin Ketone Endrin Aidehyde alpha-Chlordane gamma-Chlordane gamma-Chlordane Toxaphene Aroclor-1212 Aroclor-1221 Aroclor-1248 Aroclor-1254 Aroclor-1250	1.7 1.7 1.7 1.7 1.7 1.7 1.7 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3	1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 1.9 U 3.8 U 3.8 U 3.8 U 3.8 U 3.8 U 1.9 U 1.9 U 1.9 U 1.9 U 3.8 U
DILUTION FACTOR: DATE SAMPLED: DATE EXTRACTED: DATE ANALYZED: % MOISTURE:		1.00 12/07/98 12/21/98 01/07/99 14

CASE: 0214F SDG: DAF89F_O LABORATORY: STL\CHICAGO

TABLE 3 PESTICIDE/POLYCHLORINATED BIPHENYL SOIL ANALYSIS µg/kg

SAMPLE NUMBER: SAMPLE LOCATION: LABORATORY NUMBER:		DAF97F SD-09 9812G412-9	DAF99F SD-11 9812G412-11	DAF46G SD-12 9812G412-12	DAF47G SD-13 9812G412-13	DAF48G SD-14 9812G412-14	DAF49G SD-15 9812G412-15
COMPOUND	CRQL						
alpha-BHC	1.7	2.4 U	1.8 U	2.1 U	2.0 U	2.0 U	2.1 U
beta-BHC	1.7	2.4 U	1.8 U	2.1 U	2.0 U	2.0 U	2.1 U
delta-BHC	1.7	2.4 U	1.8 U	2.1 U	2.0 U	2.0 U	2.1 U
gamma-BHC (Lindane)	1.7	2. 4 U	1.8 U	2,1 U	2.0 U	2.0 U	2.1 U
Heptachlor	1.7	2.4 U	1.8 U	2.1 U	2.0 U	2.0 U	2.1 U
Aldrin	1.7	2.4 U	1.8 U	2.1 U	2.0 U	2.0 U	2.1 U
Heptachlor Epoxide	1.7	2.4 U	1.8 U	2.1 U	2.0 U	2.0 U	2.1 U
Endosulfan I	1.7	2.4 U	1.8 U	2.1 U	2.0 U	2.0 U	2,1 U
Dieldrin	3.3	4.7 U	3.7 U	4.2 U	4.0 U	4.0 U	4.2 U
4,4'-DDE	3.3	4.7 U	3.7 U	4.2 U	4.0 U	4.0 U	4.2 U
Endrin	3.3	4.7 U	3.7 U	4.2 U	4.0 U	4.0 U	4.2 Ú
Endosulfan II	3.3	4.7 U	3.7 U	4.2 U	4.0 U	4.0 U	4.2 U
4,4'-DDD	3.3	4.7 U	3.7 U	4.2 U	4.0 U	4.0 U	4.2 U
Endosulfan Sulfate	3.3	4.7 U	3.7 U	4.2 U	4.0 U	4.0 U	4.2 U
4.4'-DDT	3.3	4.7 U	3.7 U	4.2 U	4.0 U	4.0 U	4.2 U
Methoxychlor	17	24 U	18 U	21 U	20 U	20 U	21 U
Endrin Ketone	3.3	4,7 U	37 U	4.2 U	4.0 U	4.0 U	4.2 U
Endrin Aldehyde	3.3	4.7 U	3.7 U	4.2 U	4.0 U	4.0 U	4.2 U
alpha-Chlordane	1.7	2.4 U	1.8 U	2.1 U	2.0 U	2.0 U	2.1 U
gamma-Chlordane	1.7	2.4 U	1. 8 U	2.1 U	2.0 U	2.0 U	2.1 U
Toxaphene	170	240 U	180 U	210 U	200 U	200 U	210 U
Aroclor-1016	33	47 U	37 U	42 U	40 U	40 U	42 U
Aroclor-1221	67	95 U	73 U	84 U	80 U	80 U	83 U
Aroclor-1232	3 3	47 U	37 U	42 U	40 U	40 U	42 U
Aroclor-1242	33	47 U	37 U	42 U	40 U	40 U	42 U
Aroclor-1248	33	47 U	37 U	42 U	40 U	40 U	42 U
Aroclar-1254	33	47 U	37 U	42 U	40 U	40 U	42 U
Arodor-1260	33	47 U	37 U	42 U	40 U	40 U	42 U
DILUTION FACTOR:		1.00	1.00	1.00	1.00	1.00	1.00
DATE SAMPLED:		12/07/98	12/07/98	12/07/98	12/07/98	12/07/98	12/07/98
DATE EXTRACTED:		12/21/98	12/21/98	12/21/98	12/21/98	12/21/98	12/21/98
DATE ANALYZED:		01/07/99	01/07/99	01/07/99	01/07/99	01/07/99	01/07/99
% MOISTURE:		31	11	22	2	17	22

CASE: 0214F SDG: DAFB9F_O LABORATORY: STLICHICAGO

TABLE 3 PESTICIDE/POLYCHLORINATED BIPHENYL SOIL ANALYSIS µg/kg

SAMPLE NUMBER:		DAF50G	DAF52G
SAMPLE LOCATION:		SD-16	SD-18
LABORATORY NUMBER:		9812G412-16	9812G412-18
COMPOUND .	CRQL		
alpha-BHC beta-BHC delta-BHC gamina-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan III 4,4'-DDD Endosulfan Sulfate 4,4'-DDT Melhoxychlor Endrin Ketone Endrin Aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Aroclor-1016 Aroclor-1221 Aroclor-1242 Aroclor-1248 Aroclor-1260	1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 3.3 3.3 3.3 3.3 3.3 3.3 1.7 1.7 1.7 1.7 1.7 1.7 1.7 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3	2.6 U 2.6 U 2.6 U 2.6 U 2.6 U 2.6 U 2.6 U 5.2 U 5.2 U 5.2 U 5.2 U 5.2 U 2.6 U 2.6 U 2.6 U 2.6 U 2.6 U 2.9 U 5.2 U	2.7 U 2.7 U 2.7 U 2.7 U 2.7 U 2.7 U 2.7 U 5.3 U
DILUTION FACTOR:		1.00	1.00
DATE SAMPLED:		12/07/98	12/07/98
DATE EXTRACTED:		12/21/98	12/21/98
DATE ANALYZED:		01/07/99	01/07/99
% MOISTURE:		36	39

CASE: 0214F SDG: DAF69G_O LABORATORY: STL/CHICAGO

TABLE 5 PESTICIDE/POLYCHLORINATED BIPHENYL AQUEOUS ANALYSIS µg/L

SAMPLE NUMBER: DAF53G
SAMPLE LOCATION: RB-01
LABORATORY NUMBER: 9812G413-007

COMPOUND	С	RQL		
COMPOUND				
alpha-BHC	0.	.050	0.048 €	
beta-BHC	0	.050	0.048 L	
delta-BHC	0	.050	0.048 U	
gamma-BHC (Lindane)	0	.050	0.048 U	J
	0	.050	0.048 (J
Heptachlor	0	.050	0.048 U	J
Aldrin	O	.050	0.048 (J
Heptachlor Epoxide Endosulfan I	0	.050	0.048 (U
Dieldrin	(0.10	0.096	U
4.4'-DDE	(0.10	0.096	U
Endrin	(0.10	0.096	Ų
Endosulfan II	(0,10	0.096	U
4,4'-DDD	. (0.10	0.096	U
Endosulfan Sullate	1	0.10	0.096	U
4,4'-DDT	1	0,10	0.096	U
Methoxychior	ı	0.50	0.48	U
Endrin Kelone	1	D. 10	0.096	U
Endrin Aldehyda	1	0.10	0.096	U
alpha-Chlordane	C	,050	0.048	u
gamma-Chlordane	C).050	0.048	_
Toxaphene		5.0	4.8	
Aroclor-1016		1.0	0.96	
Areclor-1221		2.0	1.9	
Aroclor-1232		1.0	0.96	
Araclor-1242		1.0	0.96	_
Araciar-1248		1.0	0.96	
Aroclor-1254		1.0	0.96	
Aroclor-1260		1.0	0.96	u
710001-1200	·			
	DILUTION FACTOR:		1,00	
			40107100	

 DILUTION FACTOR:
 1.00

 DATE SAMPLED:
 12/07/98

 DATE EXTRACTED:
 12/14/98

 DATE ANALYZED:
 12/23/98

SITE: PUTNEY PAPER COMPANY SLUDGE DISPOSAL

CASE: 0214F SDG: DAF46G_I LABORATORY: SEVERN TRENT LABORATORIES

TABLE 1 INORGANIC SOIL ANALYSES mg/kg

SAMPLE NUMBER: SAMPLE LOCATION: LABORATORY NUMBER: PERCENT SOLIDS:	DAF96F	DAF97F	DAF98F	DAF99F	DAF46F	DAF47G	DAF48G
	SD-08	SD-09	SD-10	SD-11	SD-12	SD-13	SD-14
	9812G412-8	9812G412-9	9812G412-10	9812G412-11	9812G412-12	9812G412-13	9812G412-14
	86.5	69.5	86.9	89.3	78.2	82.5	82.9
PERCENT SOLIDS:							

INORGANIC ELEMENTS METHOD (mg/kg)					CONTRACT DETECTION LIMITS (mg/kg)
ALUMINUM P		6100	9010	9120	40
HON	4210 0.36 UJ 2.1 J 19.7 0.18 0.07 U 833 10.3 3.6 6.4 10000 3.6 J 2100 193 J 0.03 U 10.6 500 0.57 J 0.57 J 0.21 U 449 J 1.2 11.7 19.1 0.55 U	0.44 UJ 7.1 J 25.2 0.29 0.08 U 1150 11.8 5.6 13.4 15900 5.1 J 2590 209 J 0.08 U 15.5 640 1.1 J 0.25 U 517 J 1.8 U 14.5 32.6 0.63 U	0.40 UJ 5.8 J 45.0 0.48 J 0.08 UJ 1150 15.8 7.1 14.7 17900 23.7 J 3760 328 J 0.06 U 18.4 887 1.6 J 0.23 U 639 J 1.9 J 19.9 55.6 0.66 U	0.59 J 5.4 J 44.3 0.45 0.08 U 1230 15.9 7.4 15.2 17400 17.2 J 3690 320 J 0.05 U 18.7 921 1.1 J 0.23 U 659 J 1.9 U 19.8 55.7 0.63 U	12 2 40 1 1 1000 2 10 5 20 0.6 1000 3 0.1 8 1000 1 2 1000 2

ANALYTICAL METHOD

F - FURNACE

P - ICP/FLAME AA

CV - COLD VAPOR

C - MANUAL SPECTROPHOTOMETRIC

CA - MIDI-DISTILLATION

SPECTROPHOTOMETRIC

NOTE:

J = QUANTITATION IS ESTIMATED DUE TO LIMITATIONS IDENTIFIED

IN THE QUALITY CONTROL REVIEW (DATA REVIEW).

U = VALUE IS NON-DETECTED.

U.J. = VALUE IS NON-DETECTED AND DETECTION LIMIT IS ESTIMATED.

R = VALUE IS REJECTED.

NA = NOT ANALYZED

NOTE:

SITE: PUTNEY PAPER COMPANY SLUDGE DISPOSAL

CASE: 0214F SDG: DAF46G_i

LABORATORY: SEVERN TRENT LABORATORIES

TABLE 1 INORGANIC SOIL ANALYSES mg/kg

SAMPLE NUMBER:	DAF49G	DAF50G	DAF51G	DAF52G
SAMPLE LOCATION:	SD-15	SD-16	SD-17	SD-18
LABORATORY NUMBÉR:	812G412-15	9812G412-16	9812G412-17	9812G412-18
PERCENT SOLIDS:	7 7.9	63.7	82.7	61.0

INORGANIC		INSTRUMENT DETECTION LIMITS		<u></u>	<u> </u>		 CONTRACT DETECTION LIMITS
ELEMENTS	METHOD	(mg/kg)					 (mg/kg)
ALUMINUM	₽	3.50	11800	13200	13300	7240	40
ANTIMONY	Р	0.42	0.43 UJ	0.52 UJ	0.39 UJ	0.54 UJ	12
ARSENIC	Р	0.76	4.6 J	16.5 J	17.8 J	3.5 J	2
BARIUM	Р	0.04	34.6	99.6	84.0	35.5	40
BERYLLIUM	Р	0.06	0.47	0.84 J	0.89 J	0.32	1
CADMIUM	P	0.08	0.08 U	0.10 UJ	0.07 UJ	0.10 U	1
CALCIUM	P	2.94	1000	2470	1670	1240	1000
CHROMIUM	P	0.18	19.5	20.8	22.1	13.1	2
COBALT	P	0.20	7.9	13.5	12.0	6.7	10
COPPER	P	0.22	19.9	25.6	21.7	14.0	5
IRON	P	3.98	18000	25100	27900	15900	20
LEAD	P	0.38	14.3 J	20.7 J	17.7 J	6.1 J	0.6
MAGNESIUM	P	2.74	4310	5210	6100	3220	1000
MANGANESE	P	0.08	367 J	876 J	803 J	196 J	3
MERCURY	Č٧	0.05	0.06	0.05 U	0.05 U	0.07 U	1
NICKEL	P	0.22	20.6	30.4	28.2	17.0	8
POTASSIUM	P	6.60	1140	1280	1170	925	1000
SELENIUM	Р	0.42	1.1 J	2.2 J	2.3 J	1.3 J	1
SILVER	P	0.24	0.25 U	0.29 U	0.22 U	0.31 U	2
SODIUM	P.	84	589 J	978 J	343 J	581 J	1000
THALLIUM	P	0.58	2.2	2.5 J	2.8 J	1.3 J	2
VANADIUM	P	0.14	22.5	30.7	33.1	15.8	10
ZINC	P	0.12	57.3	100	103	53.5	4
CYANIDE	Ċ	0.50	0.64 U	0.77 U	NA	0.74 U	0.5

ANALYTICAL METHOD

F - FURNACE P - ICP/FLAME AA

CV - COLD VAPOR C - MANUAL SPECTROPHOTOMETRIC

GA - MIDI-DISTILLATION

SPECTROPHOTOMETRIC

NOTE:

J = QUANTITATION IS ESTIMATED DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW).

THE RESIDENCE OF THE PROPERTY OF THE PROPERTY

U = VALUE IS NON-DETECTED.

UJ = VALUE IS NON-DETECTED AND DETECTION LIMIT IS ESTIMATED.

R = VALUE IS REJECTED.

NA = NOT ANALYZED

NOTE:

SITE: PUTNEY PAPER COMPANY SLUDGE DISPOSAL

CASE: 0214F SDG: DAF22H_I

LABORATORY: SEVERN TRENT LABORATORIES

TABLE 1 INORGANIC WATER ANALYSIS µg/L

SAMPLE NUMBER: SAMPLE LOCATION: LABORATORY NUMBER: DAF53G RB-01 9812G413-007

INORGANIC		INSTRUMENT DETECTION LIMITS		CONTRACT DETECTION LIMITS
ELEMENTS	METHOD	(ug/L)		(ug/L)
ALUMINUM	Р	17.5	20.1 U	200
ANTIMONY	Р	2.1	2.1 U	60
ARSENIC	Р	3.8	3.8 U	10
BARIUM	P	0.20	0.28 U	200
BERYLLIUM	P	0.30	0.30 U	5
CADMIUM	Р	0.40	0.40 U	5
CALCIUM	P	14.7	60.9 U	5000
CHROMIUM	P	0.90	0.90 U	10
COBALT	P	1.0	1.0 U	50
COPPER	P	1.1	1.1 U	25
IRON	P	19.9	19.9 UJ	100
LEAD	P	1.9	1.9 UJ	3
MAGNESIUM	P	13.7	13.7 U	5000
MANGANESE	P	0.40	0.40 U	15
MERCURY	CV	0.10	0.10 U	0.2
NICKEL	P	1.1	1.1 U	40
POTASSIUM	P	33.0	164 U	5000
SELENIUM	P	2.1	2.1 U	5
SILVER	P	1.2	1.2 U	10
SODIUM	P	419	419 U	5000
THALLIUM	P	2.9	2.9 U	10
VANADIUM	Р	0.70	0.70 U	50
ZINC	P	0.60	2.4 U	20
CYANIDE	С	10.0	10.0 UJ	10

ANALYTICAL METHOD

F - FURNACE

P - ICP/FLAME AA

CV - COLD VAPOR

C - MANUAL SPECTROPHOTOMETRIC

CA - MIDI-DISTILLATION

SPECTROPHOTOMETRIC

NOTE:

- J QUANTITATION IS ESTIMATED DUE TO LIMITATIONS IDENTIFIED IN THE QUALITY CONTROL REVIEW (DATA REVIEW).
- U VALUE IS NON-DETECTED AND DETECTION LIMIT IS RAISED.
- UJ VALUE IS NON-DETECTED AND DETECTION LIMIT IS ESTIMATED.
- R VALUE IS REJECTED.

Dioxin/Furan Analysis - Solid Samples
Page 1 of 3

SITE: PUTNEY PAPER COMPANY

DAS NO.: 0215F SDG NO.: DAF12H

SAMPLE NUMBER: STATION LOCATION: MATRIX:
=======================================
TCDD/TCDF CONC.:
-
2,3,7,8-TCDD
1,2,3,7,8-PeCDD
1,2,3,4 7,8-HxCDD
1,2,3,6 7,6-HxCDD
1,2,3,7 8,9-HxCDD
1,2,3,4,6,7,8-HpCDD
OCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDF
2,3,4,7,8-PeCDF
1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDF
2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8,9-HpCDF OCDF
ОСЫ
TOTAL TODD
TOTAL PeCDD
TOTAL HXCDD
TOTAL HOCDD
TOTAL TODE
TOTAL PeCDF
TOTAL HXCDF
TOTAL HpCDF
=======================================
TOXICITY EQUIVALENCY:
% SOLIDS:
DILUTION FACTOR:
DATE SAMPLED:
DATE OF RECEIPT:
SAMPLE EXTRACTION DATE:
ANALYSIS DATE:
LAB SAMPLE ID:

DAF47G# SD-13 SEDIMENT	1	DAF48G# SD-14 SEDIMENT	
====================================	DL/EMPC*	pg/g	DL/EMPC*
	0.130	UJ	· · 0. 06 79
l UJ		UJ	0.172
UJ .	0.146	UJ	0.164
กา	0.551	UJ	0.581
ן וו	0.339	l UJ	0.150
i 6.76 J		6.67 J	i i
68.7 J	! 	59.1 J	i i
1	! !	i	i i
0.705 EB]	! [0.519
1	0.0958 *	}	0.333 *
i	0.190 *	0.481 JEB	i i
i UJ	0.132	J UJ	0.799
່ ບຸນ	0.275	j UJ	[0.663]
j uj	0.0599	j uu	0.142
i UJ	0.0758	່ ປາ	0.300
1.95 JEB		4.04 JEB	4
່ ພ	0.232	· UJ	0.523
່ ໝ	5.76	l nn	j 5.66 j
	1	ļ	1 1
0.0579 JEB	ł	0.0103 JEB	
l nn	0.0419	l na	0.0121 1
) UJ	0.914	UJ UJ	0.591
1 12.2 JEB	i	12.2 JEB	
1.18 JEB	!) 1.65 JEB I 4.39 JEB	i i
1.75 JEB	1 12	4.59 JEB UJ	1 2.80
i UJ	1.43 1 6.26	1 UJ	1 4.56
UJ] 0.20		
0.326 J		0.475 J	Ì
84		84	
1.0		1.0	į
1 12/07/98		12/07/98	j
1 12/10/98		12/10/98	·
1 12/11/98		12/11/98	
01/02/99		12/31/98	
115800		115801	
· := ===================================	= ==========	= =====================================	=========

1= These values are EMPCs (Estimated Maximum Possible Concentration); EMPC values are not qualified with a "J", Values without an "*" are the Detection Limits.

^{# =} These values are reported on a dry weight basis.

E = Exceeded instrument calibration range.

EB = Equipment Blank contamination.

E: PUTNEY PAPER COMPANY ياAS NO.; 0215F

SDG NO.: DAF12H

STATION LOCATION:	SAMPLE NUMBER: DAF49G # STATION LOCATION: SD-15 MATRIX: SEDIMENT		DAF50G # SD-16 SEDIMENT		DAF52G #		=	
TODD/TODE CONC.:	ρg/g	DL/EMPC*	i pg/g	DL/EMPC*	, pg/g	DL/EMPC* [
	UJ	 0.106	i Oj	i 0.108	UJ	0.094		
3,7,8-TCDD		0.100	เ	0.0638	Ü	0.128		
2,3,7,8-PeCDD	UJ	i 0.179	i UJ	0.247	j UJ	0.18		
2,3,4.7,8-HxCDD	иJ		ı UJ	0.331	į UJ	0.146		
2,3,6,7,8-HxCDD \	UJ	0.664	l OJ	0.225	່ ພ	0.098		
2 3,7,8,9-HxCDD	UJ	0.608	ı UJ	0.749	i UJ	1.340		
2,3,4,6,7,8-HpCDD 1	เกา	1 4.69	1	1 7.39	UJ	10.600		
CDD	UJ	33.5	i na	1 1.35		{		
I			1] 0.161 *	1	, 0.130 *		
3,7,8-TCDF	1.02 JEB			0.0698	1	0.018 *	1	
2,3,7,8-PeCDF		0.494	1	0.0030)	0.108 *	İ	
3,4,7,8-PeCDF		0.476 *	1	1	l UJ	0.046	1 1	
,2,3,4,7,8-HxCDF	l M1	1.07	l Oi	0.359	i OJ	0.233	1	
,2,3,6,7,8-HxCDF	UJ	[0.458	l UJ	0.0558		0.0004	! !	
,2,3,7,8,9-HxCDF	UJ	0.0837	l m	0.145	l UJ	0.0004	î 1	
,3,4,6,7,8-HxCDF	j UJ	0.448	l Oi	[0.231	į DJ	•	<u> </u>	
,3,4,6,7 8-HpCDF	2.62 JEB	i		0.680 *	1	0.734 *	\	
.2,3,4,7,8,9-HpCDF	i UJ	0.265	UJ	0.227	l W	0.263	1	
	UJ	1 2.94	į UJ	1.76	i UJ	2.580		
COF	 I	i	i	İ	1	1		
OTAL TODD	0.0075 JEB	i	0.0089 JEB	1	0.2010 JEB			
	l UJ	0.0073	j UJ	0.0289	f On	0.0357	ļ.	
OTAL PeCDD	i UJ	1.77	j UJ	0.0287	l m	0.0157	1	
TOTAL HXCDD	8.30 JEB	•	0.747 JEB		0.043 JEB	1		
TOTAL HPCDD	2.60 JES		0.126 JEB	1	0.067 JEB	1		
TOTAL TCDF	2.20 JEB		0.0193 JEB		0.3610 JEB	1		
TOTAL PeCDF	l UJ	2.89	ຸ່ ບາ	0.0225	1 nn	0.2330		
TOTAL HXCDF	1 03	4.92	j UJ	0.0213	j UJ	0.0301		
TOTAL HpCDF		; ====================================	_ = ==============	========	= ==============	========	: 1 ==	
TOXICITY EQUIVALENCY:	1		0.0844 J		0.0752 J			
% SOLIDS:			58		75			
DILUTION FACTOR:	. 1		1.0		1.0			
DATE SAMPLED:			12/07/98		12/07/98	-		
DATE OF RECEIPT			12/10/98		12/10/98		!	
== : :	- 1		12/11/98		12/11/98			
SAMPLE EXTRACTION DATE			12/30/98		12/30/98		1	
ANALYSIS DATE LAB SAMPLE ID			1 115803		115804			

^{* =} These values are EMPCs (Estimated Maximum Possible Concentration); EMPC values are not qualified with a "J", Values without an "" are the Detection Limits.

^{# =} These values are reported on a dry weight basis.

EB = Equipment Blank contamination.